首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
The processes of lactic acid production include two key stages, which are (a) fermentation and (b) product recovery. In this study, free cell of Bifidobacterium longum was used to produce lactic acid from cheese whey. The produced lactic acid was then separated and purified from the fermentation broth using combination of nanofiltration and reverse osmosis membranes. Nanofiltration membrane with a molecular weight cutoff of 100–400 Da was used to separate lactic acid from lactose and cells in the cheese whey fermentation broth in the first step. The obtained permeate from the above nanofiltration is mainly composed of lactic acid and water, which was then concentrated with a reverse osmosis membrane in the second step. Among the tested nanofiltration membranes, HL membrane from GE Osmonics has the highest lactose retention (97 ± 1%). In the reverse osmosis process, the ADF membrane could retain 100% of lactic acid to obtain permeate with water only. The effect of membrane and pressure on permeate flux and retention of lactose/lactic acid was also reported in this paper.  相似文献   

2.
Desizing wastewaters from the bleaching and dyeing industry of Hong Kong were treated by nanofiltration (NF) membrane separation on a pilot scale in the pressure controlled region. The two brown colored wastewaters had chemical oxygen demand (COD) of 14,000 mg l−1 and 5430 mg l−1, respectively. Permeate flux and COD retention were investigated in relation to transmembrane pressure drop, temperature, and feed-solution concentration. The permeate flux was found to increase significantly with transmembrane pressure drop and to decrease with feed concentration. Higher permeate flux was found for wastewater with higher pH. A minor increase in COD retention was found for the increase in transmembrane pressure drop as well as operating temperature. The COD retention was about 95% for wastewater with pH 10.2, and 80–85% for wastewater with pH 5.5. The difference in the results obtained for the two kinds of wastewater was attributed to their compositional difference that resulted from the desizing operation. Fouling of membrane is not a big concern for the NF membrane tested in treating this type of wastewater. The quality of the permeate is all above the discharge standard for foul sewer in Hong Kong. The experimental results are consistent with the theoretical analysis.  相似文献   

3.
Lactobacillus bulgaricus was immobilized in the shell side of an industrial hollow-fiber ultrafiltration module. Acid whey permeate, containing 46 g/L lactose supplemented with 10 g/L yeast extract, was pumped through the tube side at dilution rates of 0.2–2.5/h. At a cell concentration of 100 g/L, productivity was 1.5–5 g lactic acid/L/h.  相似文献   

4.
The performance of immobilized Bifidobacterium longum in sodium alginate beads and on a spiral-sheet bioreactor for the production of lactic acid from cheese whey was evaluated. Lactose utilization and lactic acid yield of B. longum were compared with those of Lactobacillus helveticus. B. longum immobilized in sodium alginate beads showed better performance in lactose utilization and lactic acid yield than L. helveticus. In the spiral-sheet bioreactor, a lactose conversion ratio of 79% and lactic acid yield of 0.84 g of lactic acid/g of lactose utilized were obtained during the first run with the immobilized L. helveticus. A lactose conversion ratio of 69% and lactic acid yield of 0.51 g of lactic acid/g of lactose utilized were obtained during the first run with immobilized B. longum in the spiral-sheet bioreactor. In producing lactic acid L. helveticus performed better when using the Spiral Sheet Bioreactor and B. longum showed better performance with gel bead immobilization. Because B. longum is a very promising new bacterium for lactic acid production from cheese whey, its optimum fermentation conditions such as pH and metabolic pathway need to be studied further. The ultrafiltration tests have shown that 94% of the cell and cheese whey proteins were retained by membranes with a mol wt cutoff of 5 and 20 KDa.  相似文献   

5.
Membrane filtration is a suitable method for cell harvesting and clarification of fermentation broths. Hollow fiber ultrafilters gave essentially 100% rejection ofL. bulgaricus cells from a whey permeate fermentation broth. A combination of low pressures and high velocity generally gave the best permeate flux. Fermentation media components (in this case, from the whey permeate) contributed significantly to fouling. Considering the pressure limitations of the current generation of asymmetric hollow fiber modules and the changes in physical properties of the fermentation broths, a cell concentration of 100–150 g/L could be obtained with the flux still relatively high (above 20LMH), although the chemical compatibility of the membrane module itself under long-term exposure to high acid conditions should be considered.  相似文献   

6.
In this study, the glycerol solutions were fermented using Lactobacillus casei bacteria. The broths were pre-treated by microfiltration, followed by a further separation with nanofiltration. The latter process was carried out in two stages, using the NF270 and NF90 membranes, respectively. The concentrates thus obtained were enriched with citric acid (first stage) and then with lactic acid and glycerol (second stage). By means of SEM and AFM microscopy, as well as ATR-FTIR analysis, the intensity of membrane-fouling was studied. The colloidal fouling and bio-fouling caused a more than two-fold decrease in the permeate flux during microfiltration of the broth. This pre-treatment stage was effective, and a permeate turbidity of less than 0.2 NTU was obtained. However, the nanofiltration membranes exhibited a 30 % flux decline over the course of the process, mainly due to the organic fouling.  相似文献   

7.
The fermentative production of lactic acid from cheese whey and corn steep liquor (CSL) as cheap raw materials was investigated by using Lactobacillus sp. RKY2 in order to develop a cost-effective fermentation medium. Lactic acid yields based on consumed lactose were obtained at more than 0.98 g/g from the medium containing whey lactose. Lactic acid productivities and yields obtained from whey lactose medium were slightly higher than those obtained from pure lactose medium. The lactic acid productivity gradually decreased with increase in substrate concentration owing to substrate and product inhibitions. The fermentation efficiencies were improved by the addition of more CSL to the medium. Moreover, through the cell-recycle repeated batch fermentation, lactic acid productivity was maximized to 6.34 g/L/h, which was 6.2 times higher than that of the batch fermentation.  相似文献   

8.
Wine aroma represents one of the main properties that determines the consumer acceptance of the wine. It is different for each wine variety and depends on a large number of various chemical compounds. The aim of this study was to prepare red wine concentrates with enriched aroma compounds and chemical composition. For that purpose, Cabernet Sauvignon red wine variety was concentrated by reverse osmosis (RO) and nanofiltration (NF) processes under different operating conditions. Different pressures (2.5, 3.5, 4.5 and 5.5 MPa) and temperature regimes (with and without cooling) were applied on Alfa Laval LabUnit M20 equipped with six composite polyamide RO98pHt M20 or NF M20 membranes. Higher pressure increased the retention of sugars, SO2, total and volatile acids and ethanol, but the temperature increment had opposite effect. Both membranes were permeable for water, ethanol, acetic acid, 4-ethylphenol and 4-ethylguaiacol and their concentration decreased after wine filtration. RO98pHt membranes retained higher concentrations of total aroma compounds than NF membranes, but both processes, reverse osmosis and nanofiltration, resulted in retentates with different aroma profiles comparing to the initial wine. The retention of individual compounds depended on several factors (chemical structure, stability, polarity, applied processing parameters, etc.).  相似文献   

9.
Two distinctive forms of growth (mycelial filamentous and mycelial pellets) ofRhizopus oryzae were obtained by manipulating the initial pH of the medium with the controlled addition of CaCO3 in a bubble fermenter. In the presence of CaCO3, diffused filamentous growth was obtained when the initial pH of the substrate was 5.5. In the absence of CaCO3, mycelial pellet growth was obtained when the initial pH was 2.0. The fermentation study indicated that the mycelial growth has a shorter lag period before the onset of acid formation. Both physical forms of growth ofRhizopus exhibited a high yield of L-lactic acid in the bubble fermenter when the initial glucose concentration exceeded 70 g/L. A final lactic acid concentration of 62 g/L was produced by the filamentous form ofRhizopus from 78 g/L glucose after 27 h. This showed a weight yield of 80% of glucose consumed, with an average specific productivity of 1.46 g/h/g. Similarly, the pellet form ofRhizopus produced a final lactic acid concentration of 66 g/L from 76 g/L glucose after 43 h, with a weight yield of 86% and an average specific productivity of 1.53 g/h/g.  相似文献   

10.
The relation between biofouling and membrane flux in spiral wound nanofiltration and reverse osmosis membranes in drinking water stations with extensive pretreatment such as ultrafiltration has been studied. The flux – water volume flowing through the membrane per unit area and time – is not influencing the development of membrane biofouling. Irrespective whether a flux was applied or not, the feed spacer channel pressure drop and biofilm concentration increased in reverse osmosis and nanofiltration membranes in a monitor, test rigs, a pilot scale and a full-scale installation. Identical behavior with respect to biofouling and feed channel pressure drop development was observed in membrane elements in the same position in a nanofiltration installation operated with and without flux. Calculation of the ratio of diffusive and convective flux showed that the diffusive flux is considerably larger than the convective flux, supporting the observations that the convective flux due to permeate production is playing an insignificant role in biofouling. Since fouling occurred irrespective of the actual flux, the critical flux concept stating that “below a critical flux no fouling occurs” is not a suitable approach to control biofouling of spiral wound reverse osmosis and nanofiltration membranes.  相似文献   

11.
Xylose is an intermediate product in xylitol production. Nanofiltration could simplify and enhance this separation step conventionally done by chromatographic methods. Here different hemicellulose hydrolyzate feeds were nanofiltered to recover xylose into the permeate.Two different batches of hemicellulose hydrolyzate were prepared: the hydrolyzate as such and modified with crystalline xylose addition. Both feed solutions were diluted to a total dry solids (TDS) content of approximately 21 wt.% and the xylose contents were 48.7% and 59.1% of the TDSf (total dry solids in feed). The filtration experiments were made at 40, 50 and 60 °C in total reflux mode for approximately 30 min at each pressure of 20, 25, 30, 35 and 40 bar. In addition, a 20-h filtration was made at 50 °C and 30 bar. A DDS LabStak M20-filter was used and it was equipped with Desal-5 DK, Desal-5 DL and NF270 membranes.In short-term filtrations, the nanofiltered permeate of the original hydrolyzate had 78–82% xylose of the TDSp (total dry solids in permeate) and the modified hydrolyzate 86–88% xylose of the TDSp. Thus, considerable xylose purification was obtained. The addition of crystalline xylose into the hemicellulose hydrolyzate gave a notable increase in permeate fluxes. The 20-h filtration showed fouling and compaction effects as a flux decrease of approximately 10–25% was detected in the retention integrity test. According to the results, xylose purification from hemicellulose hydrolyzate could be enhanced by nanofiltration.  相似文献   

12.
The nanofiltration of binary aqueous solutions of glucose, sucrose and sodium sulfate was investigated using thin-film composite polyamide membranes with different molecular weight cut-off's. The NF experiments, in total recycle mode, were performed in a plate-and-frame module Lab 20 (AlfaLaval), at 22 °C and with a flowrate of 8.2 L/min, using the membranes NF90, NF200 and NF270 from FilmTec (Dow Chemical), for transmembrane pressures between 1 and 6 MPa and with aqueous solutions with osmotic pressures of between 0.5 and 3.0 MPa. The permeate flux was predicted by the osmotic pressure model, using the membrane hydraulic resistance and the solution viscosity inside the membrane pores, and computing the concentration polarization with recourse to a mass-transfer correlation specific for the plate-and-frame module used. The flux predictions, using the pure water viscosity, agree reasonably with the experimental data only for low transmembrane pressures and with the most diluted solutions. For higher transmembrane pressures and for higher solute concentration the predicted fluxes can be as far as 2.5, 4.1 and 9.6 times higher than the experimental one, for the aqueous solutions of Na2SO4, glucose and sucrose, respectively. These deviations are strongly reduced when the pure water viscosity is replaced by the solution viscosity adjacent to the membrane. In this case, the maximum deviation between predictions and experiments occurs also for higher transmembrane pressures and for higher solute concentration, but the maximum ratio between predicted values and the experiments were reduced now to 1.8, 2.1 and 2.9, for the aqueous solutions of Na2SO4, glucose and sucrose, respectively. Even using the solution viscosity adjacent to the membrane, and for the systems investigated, the osmotic pressure model must used with caution for design purposes because it may over predict the permeate flux by a factor of about 2 when the solute concentration is high.  相似文献   

13.
Nowadays, hydrogen produced globally has been synthesized from fossil fuel with limited source. Therefore, research has been developed in order to explore biological H2 production by dark fermentation. The purpose of this work was to evaluate the effect of initial pH and ferrous sulfate and ammonium sulfate concentrations on the production of biohydrogen by dark fermentation. The process was carried out in batch mode under anaerobic conditions, in the absence of light, and at standard room temperature and pressure. A microbial consortium provided by the effluent treatment plant of a local dairy company was inoculated into a synthetic medium supplemented with cheese whey permeate (20 g/L of lactose) as a carbon source. The influence of three variables was analyzed by a central composite design 2(3), and the optimum results of hydrogen yield (4.13 mol H2/mol lactose) and productivity (86.31 mmol H2/L/day) were achieved at initial pH 7.0 and FeSO4 and (NH4)2SO4 concentrations of 0.6 and 1.5 g/L, respectively. Under these conditions, the kinetic parameters of fermentation were investigated by analyzing the profile of H2 yield and productivity, metabolite concentrations, pH, and concentration of dissolved iron. In the kinetic analysis, the modified Gompertz equation described adequately the fermentative hydrogen production from cheese whey permeate (R 2?=?0.98). The profile of ethanol and volatile organic acids showed that lactic acid and butyric acid were the main metabolites produced, and the sum of both by-products corresponded to about 58 % of the total metabolites.  相似文献   

14.
The fermentative production of lactic acid from cheese whey and corn steep liquor (CSL) as cheap raw materials was investigated by using Lactobacillus sp. RKY2 in order to develop a cost-effective fermentation medium. Lactic acid yields based on consumed lactose were obtained at more than 0.98 g/g from the medium containing whey lactose. Lactic acid productivities and yields obtained from whey lactose medium were slightly higher than those obtained from pure lactose medium. The lactic acid productivity gradually decreased with increase in substrate concentration owing to substrate and product inhibitions. The fermentation efficiencies were improved by the addition of more CSL to the medium. Moreover, through the cell-recycle repeated batch fermentation, lactic acid productivity was maximized to 6.34 g/L/h, which was 6.2 times higher than that of the batch fermentation.  相似文献   

15.
Semicontinuous production of lactic acid from cheese whey using free cells of Bifidobacterium longum with and without nanofiltration was studied. For the semicontinuous fermentation without membrane separation, the lactic acid productivity of the second and third runs is much lower than the first run. The semicontinuous fermentation with nanoseparation was run semicontinuously for 72 h with lactic acid to be harvested every 24 h using a nanofiltration membrane unit. The cells and unutilized lactose were kept in the reactor and mixed with newly added cheese whey in the subsequent runs. Slight increase in the lactic acid productivity was observed in the second and third runs during the semicontinuous fermentation with nanofiltration. It can be concluded that nanoseparation could improve the lactic acid productivity of the semicontinuous fermentation process.  相似文献   

16.
朱宝库 《高分子科学》2014,32(3):377-384
A low operating pressure nanofiltration membrane is prepared by interfacial polymerization between m-phenylenediamine(MPDA) and trimesoyl chloride(TMC) using PVC hollow fiber membrane as supporting.A series of PVC nanofiltration membranes with different molecular weight cutoff(MWCO) can be obtained by controlling preparation conditions.Chemical and morphological characterization of the membrane surface was carried out by FTIR-ATR and SEM.MWCO was characterized by filtration experiments.The preparation conditions were investigated in detail.At the optimized conditions(40 min air-dried time,aqueous phase containing 0.5% MPDA,0.05% SDS and 0.6% acid absorbent,oil phase containing 0.3% TMC,and 1 min reaction time),under 0.3 MPa,water flux of the gained nanofiltration membrane reaches 17.8 L/m2·h,and the rejection rates of methyl orange and MgSO4 are more than 90% and 60%,respectively.  相似文献   

17.
Actinobacillus succinogenes 130 Z was used to produce succinic acid from cheese whey in this study. At the presence of external CO2 supply, the effects of initial cheese whey concentration, pH, and inoculum size on the succinic acid production were studied. The by-product formation during the fermentation process was also analyzed. The highest succinic acid yield of 0.57 was obtained at initial cheese whey concentration of 50 g/L, while the highest succinic acid productivity of 0.58 g h−1 L−1 was obtained at initial cheese whey concentration of 100 g/L. Increase in pH and inoculum size caused higher succinic acid yield and productivity. At the preferred fermentation condition of pH 6.8, inoculum size of 5% and initial cheese whey concentration of 50 g/L, succinic acid yield of 0.57, and productivity of 0.44 g h−1 L−1 were obtained. Acetic acid and formic acid were the main by-products throughout the fermentation run of 48 h. It is feasible to produce succinic acid using lactose from cheese whey as carbon resource by A. succinogenes 130 Z.  相似文献   

18.
We carry out a detailed experimental and theoretical study of the influence of temperature on nanofiltration performance using the Desal5DK membrane. Experimental results for the permeate volume flux density and rejection of four neutral solutes (glycerin, arabinose, glucose, and sucrose) are presented for temperatures between 22 and 50 degrees C. Solute rejection is modeled using a hindered transport theory that allows us to unveil the crucial role played by changes in the membrane structural parameters (effective pore radius and membrane thickness) due to changes in temperature.  相似文献   

19.
This work is focused on modelling microfiltration for clarifying fermentation broths for the production of lactic acid. The hydraulic resistance-in-series model was used with membrane resistance, bacterial cell cake resistance, adsorption resistance and solute concentration polarisation resistance. Most of the model parameters were determined from independent experiments. This model was applied for microfiltrations operated either under constant transmembrane pressure or under constant permeate flux. Resistances due to adsorption and to solute concentration polarisation dominated. Bacterial cake resistance was found to be very low or equal to zero when microfiltration was below the critical flux.  相似文献   

20.
The effects of yeast cells on membrane fouling by a protein mixture were studied in dead-end filtration. A 0.2 μm cellulose acetate membrane was used with a 1 g/l protein mixture consisting of equal amounts of bovine serum albumin, lysozyme, and ovalbumin. Yeast cells were used either in suspension or as preformed yeast cakes on top of the membrane. A small concentration of 0.022 g/l yeast cells in suspension enhanced the permeate flux and maintained protein transmission at nearly 100%, compared with a 60% reduction in the protein concentration in the permeate obtained after 3 h for the protein mixture filtered alone. Higher suspended yeast concentrations of 0.043 and 0.18 g/l resulted in lower fluxes and intermediate values for the protein transmission. For the three different thicknesses of preformed yeast cakes studied (0.025, 0.05, and 0.10 cm), the cake with intermediate thickness resulted in protein transmission of nearly 100% and the highest permeate flux. The thinner yeast cake resulted in a lower permeate flux, but it maintained protein transmission at nearly 100%, whereas the thicker cake resulted in a reduction in both permeate flux and protein transmission. The mechanism proposed to explain the results is based on the formation of a secondary membrane by the yeast cells on top of the original membrane. This secondary membrane entraps protein aggregates, which would otherwise cause membrane fouling and reductions in permeate flux and protein transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号