首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
Raman spectra of antiferromagnetic thallium cobaltous fluoride have been obtained with 4579A argon ion laser excitation at temperatures from 4°K to TN = 94 ± 2°K. The features observed consist of six Co2+ excitons ranging in energy from 325 to 1070 cm-1, at two-magnon peak with low-temperature energy of 315 cm-1, and a one-magnon feature whose 4°K energy is 37 cm-1. The energy and linewidth of the one-magnon scattering has been measured from 4°K to about 0.8 TN; it is found that the magnon becomes critically damped at about 0.8 TN, in good agreement with our previous observations on RbCoF3. The Co2+ excitons observed at 325, 380, 410, 730 (weak), 960, and 1070 cm-1 agree in energy quite well with the KCoF3 levels calculated by Buyers, Holden et al. as 340, 400, 467, 767, 967 and 1050 cm-1.  相似文献   

2.
Light scattering from magnons in CsCoBr3 has been measured for temperatures well below the upper antiferromagnetic 3D ordering temperature of TlN = 28 K. These experiments reveal multiple magnon features of energies in the range 90 to 170 cm-1 similar to those found in CsCoCl3 but previously unobserved for the bromide. Prominent features in the spectrum and their temperature dependence are described in terms of a recent theory by Shiba. Other, weaker features are explained by a simple extension of the theory to include fluctuations. A new band is observed at 178 cm-1, whose intensity drops sharply prior to the lower 3D ordering transition at TN = 10 K. This band is assigned to magnon-phonon combination scattering.  相似文献   

3.
Light scattering from magnons in CsCoBr3 has been measured for temperatures well below the upper antiferromagnetic 3D ordering temperature of TlN = 28 K. These experiments reveal multiple magnon features of energies in the range 90 to 170 cm-1 similar to those found in CsCoCl3 but previously unobserved for the bromide. Prominent features in the spectrum and their temperature dependence are described in terms of a recent theory by Shiba. Other, weaker features are explained by a simple extension of the theory to include fluctuations. A new band is observed at 178 cm-1, whose intensity drops sharply prior to the lower 3D ordering transition at TlN = 10 K. This band is assigned to magnon-phonon combination scattering.  相似文献   

4.
We have studied the one-magnon excitation in NiF2 crystals by the method of right-angle light scattering from 1 to 73°K. The temperature dependence of frequency and line width agrees very well with previous far infrared absorption data. The temperature dependence of the integrated intensity follows the theoretical prediction but deviates from the previous far infrared data.  相似文献   

5.
Optical absorption spectra of DyFeO3 have been investigated at 1.2≦T≦4.2 °K, andT=77 °K From the temperature dependent lineshift a Néel temperature ofT N=(3.8±0.5) °K is deduced for the dysprosium sublattices. The groundstate splitting due to the iron-dysprosium interactions is about 1.5 cm?1 and due to the dysprosiumdysprosium interactions (5.0±1.4) cm?1. Zeeman studies give the magnetic moment of the dysprosium ions asμ=(9.2±1.0)μ B.  相似文献   

6.
The recent line-center absorption coefficient measurements on the P(6) line of the CO fundamental have been shown to be consistent with Sv(T) = 273(273/T)cm-2atm-1 and γ0(T) = 0.0652(300/T)0.66 for the absolute intensity of the band and the nitrogen-broadened line width in the temperature range 300–800°K.  相似文献   

7.
Absolute intensities, self-broadening coefficients, and foreign-gas broadening by Ar and N2 were measured at temperatures of 197, 233 and 294 K for the 3001II←0000 band of CO2 at 6348 cm-1. Also, the intensity parameters and total band intensity were calculated. We obtained for the vibration-rotation interaction factor the value F(m) = 1 + (0.26 ± 0.06) × 10-2m + (0.92 ±0.32 × 10-4 m2; for the purely vibrational transition moment, we found ¦R00003001II¦к(0.4351 ± 0.0014)()10b3 debye; and, for the total band intensity at STP conditions, Sband(3001II←0000)STP = 1255 ± 9 cm-1 km-1 atm-1.Self-broadening coefficients at 197 and 294 K were also measured, as well as broadening by Ar and N2. Foreign-gas-broadening efficiencies (Ar and N2) were determined. Finally, a comparison is made with measurements by other authors and with theoretically calculated values.  相似文献   

8.
A tunable infrared diode laser was used to record 17 fully resolved vibration-rotation transitions in the v1 fundamental band of HCN at 3μ. The experiments were conducted in an absorption cell on room temperature mixtures of HCN diluted by N2 and Ar. The v1 fundamental band strength of HCN was determined to be 267±8 cm-2 atm-1 at 273.2 K. Small but significant reductions in the residual errors were obtained by using the Galatry profile rather than the Voigt profile to fit the experimentally recorded line shapes. Collisional broadening and narrowing parameters were determined simultaneously from Galatry profile fits to the data. The collision-broadened linewidths of HCN lines in N2 and Ar were determined as a function of rotational quantum number of transitions ranging from P(14) to R(14) (3268.22-3353.29 cm-1). The optical diffusion coefficients of HCN in N2 and Ar at 300 K were determined from the collisional narrowing parameters and were 0.074±0.01 and 0.016±0.03 cm2s-1 respectively.  相似文献   

9.
One-magnon Raman scattering has been observed in the metamagnets CoCl2 and FeCl2. The k = 0 magnon energies are 16 ± 1 cm-1 at 21 K and 16.4 ± 0.4 cm-1 at 12 K, respectively and these values are in good agreement with previous AFMR and neutron scattering results. A search for two-magnon scattering in both compounds was unsuccessful, largely because of masking from nearby first-order phonons and a weak temperature dependent broad band at 140 cm-1 in CoCl2, which is assigned to two-phonon scattering from acoustic phonons.  相似文献   

10.
The Hall effect measurements performed in the layer compound α-RuCl3 show that, in the sheets perpendicular to the c-axis, μ(300 K) ? 0.2 cm2V sec?1; the temperature dependence of μ appears to be μ(T) = μ0T-n, with n = 2.3 ± 0.1, in the 180–320 K range. The transport appears to be due to electrons that move with a band type of mechanism, the main scattering process being due to the homopolar high energy phonons which modulate the thickness of the layers.  相似文献   

11.
The integrated intensity of the fundamental vibration-rotation band of NO and the pressure-broadening parameters of NO with various foreign gases have been determined at room temperature by measuring the resonance absorption of the infrared emission line of the NO fundamental. The Hg photo-sensitized vibrational excitation of NO was utilized to obtain a light source for the NO fundamental. in which the individual rotational lines could be described in terms of the Doppler line profile at room temperature. The total band intensity was found to be 122 ± 6 cm-2 atm-1, and the collision-broadened full-widths at half maximum in CO2, N2, Ar, H2 and He gases were 0.10, 0.086, 0.059, 0.086 and 0.078 cm-1 atm-1, respectively.  相似文献   

12.
Spectral transmission of i.r. radiation through the nitrogen-broadened lines of the υ3-fundamental of N2O has been measured at 154°, 202° and 300°K. A value of S0v = 1411±54 cm-2atm-1 at S.T.P. has been obtained for the combined strength of the ν3 and ν21321 bands using the Wilson-Wells-Penner-Weber method. This value for Sv, the relative intensity calculations of Gray Young, the room-temperature data of Toth for nitrogen-broadened half-widths in the ν13 and 2ν203 bands and the T-0.75 variation of line width with temperature proposed by Varanasi and Sarangi are shown to yield excellent agreement between the measured and computed spectral transmittance throughout the band.  相似文献   

13.
We present data on forward and backward scattering in CuCl at liquid N2 temperature. Peaks at 146 and 172 cm-1 which appear in both forward and backward scattering spectra are attributed to other than first order scattering by optical phonons. The data on polarition scattering indicate that the atomic displacement contribution to the scattering by TO phonons is rather small. From the experimentally determined polarition dispersion curve we obtain a value of 174 ±2.5 cm-1 for ωT and a value of 5.3 for ?S.  相似文献   

14.
DyAsO4 undergoes a crystallographic phase transition atT D=11.2K which is induced by a cooperative Jahn-Teller-effect. As deduced from the optical absorption spectra the distance between the two lowest lying Kramers doublets of the Dy3+ ion is increased from (6.1±0.5) cm?1 aboveT D to (25.0±0.5) cm?1 at 4.2 K. BelowT D the splitting factor of the lowest doublet becomes nearly uniaxial with a maximum value ofg b =17.5±1.0 along the crystallographicb-axis. AtT N=2.44 K the crystals order antiferromagnetically. The absorption lines of Er3+ ions in DyAsO4 show already a splitting immediately belowT D which is explained by magnetic short range ordering of the Dy3+ ions in the temperature rangeT N D .  相似文献   

15.
A tunable infrared diode laser was used to measure the fully resolved absorption line shape of the P(10) line in the ν1 band (10°0–00°0) of HCN for shock-heated mixtures of HCN-Ar at temperatures of 1000, 1500 and 2000 K. The temperature dependence of the collision-broadening coefficients 2γ (cm-1 atm-1, FWHM) were inferred for both self-broadening and broadening by argon. For the assumed form 2γ = 2γ0(T0/T)n the exponent n was determined to be 0.63 ± 0.06 with 2γ0 = 0.11 cm-1atm-1 and T0 = 300 K for argon-broadening in the range 300 < T < 2000 K, and 1.2 ± 0.6 with 2γ0 = 0.68 cm-1atm-1 and T0 = 1000 K for self-broadening in the range 1000 < T < 2000 K.  相似文献   

16.
N2-broadened halfwidths have been measured for 51 absorption lines belonging to the ν3 fundamental band of hydrogen cyanide (1H12C14N) near 3311 cm?1. The data were recorded at room temperature using a Fourier transform spectrometer with a nominal resolution of 0.06 cm?1. A nonlinear least-squares spectral-fitting procedure was used to obtain both line intensities and collision-broadened halfwidths from scans recorded at several different pressures. The N2-broadened halfwidths, determined for all lines with J ≤ 25 in both the P and R branches of the band, show the expected distribution with J for broadening by a nonpolar gas. The halfwidth values range from approximately 0.17 cm?1 atm?1 near the band center to 0.11 cm?1 atm?1 for high-J lines. The band intensity for the ν3 fundamental derived from these measurements is 236.2 ± 9.5 cm?2 atm?1 at 296 K, and empirical coefficients for the vibration-rotation interaction F-factor were also determined.  相似文献   

17.
The integrated intensities of the multiplets P(1)–P(10), R(0)–R(9), and of the Q-branch in the 2ν3-band of 12CH4 have been measured at 102°K, 152°K, 202°K, 251°K, and 300°K. Comparison of our data with theoretical line strengths confirms, at all of the temperatures mentioned, the intensity anomalies observed by Margolis(5) for lines in this band. The integrated intensity of the 2ν3-band is found to be Sv = (1·76±-0·04)(300/T (°K)) cm?2 atm?1.  相似文献   

18.
The absolute intensities of all the J-multiplets between R(13) at 1375cm-1 and P(12) at 1225 cm-1, in the v4-fundamental of 12CH4, have been measured at 300°K. Our values are consistent with published band-intensity measurements and also with the theoretical line strength tabulation by Fox. Spectral transmittance computation using a Lorentz line shape with a hydrogen-broadened half-width of 0.075 cm-1 atm-1 at 300°K for all the lines in the band is in excellent agreement with our experimental data measured with a spectral resolution of 0.2 cm-1. Our best estimate for the absolute intensity of the band is 145±8 cm-2 atm-1 at STP.  相似文献   

19.
Absolute line intensities and self-broadening coefficients have been measured at 197° and 294°K for the 201II ← 000 band of 12C16O2 at about 4978cm-1. The vibration-rotation factor (FVR), the purely vibrational transition moment (∣R(O)∣), and the integrated band intensity (Sband) are deduced from the measurements. The results are: FVR(m)=1+(0.24±0.08)x10-4m+(0.55+0.21)x10-4m2, ∣R(O)∣= (4.340±0.008x10-3 debye, Sband=96372±190cm-1km-1atm-1STP. The results for self-broadening coefficients, as well as for individual vibration-rotation lines, are presented in the text.  相似文献   

20.
Spectra of the 2ν2 band of formaldehyde have been obtained with high resolution (0.035 cm?1). Measurements were made with path lengths of 8, 16, and 24 m and at sample pressures from 0.1 to 0.3 mm Hg at room temperature (~296°K). From these data, the following constants were determined for the 2ν2 band in wavenumber units: v0=3471.718±0.004,A=9.3958±030013,B=1.28100±0.00024,C=1.11662±0.00024, Tbbb=-12.8±0.5×10-6,Taabb=60±5×10-6. The line strengths were also obtained from the data. The strengths were analyzed to determine the band strength and the rotational factors. At 296°K, the strength of the 2ν2 band was found to be 15.5 ± 0.9 cm?1/(cm·atm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号