首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This study presents a simple design for a mobile, single-sided nuclear magnetic resonance (NMR) apparatus which uses the magnetic flux parallel to the magnetization direction of a single, disc-shaped permanent magnet polarized in radial direction. The stray magnetic field above the magnet is approximately parallel to the magnetization direction of the magnet and is utilized as the B0 magnetic field of the apparatus. The apparatus weighs 1.8 kg, has a compact structure and can be held in one's palm. The apparatus generates a B0 field strength of about 0.279 T at the center of apparatus surface and can acquire a clear Hahn echo signal of a pencil eraser block lying on the RF coil in one shot. Moreover, a strong static magnetic field gradient exists in the direction perpendicular to the apparatus surface. The strength of the static magnetic field gradient near the center of the apparatus surface is about 10.2 T/m; one-dimensional imaging of thin objects and liquid self-diffusion coefficient measurements can be performed therein. The available spatial resolution of the one-dimensional imaging experiments using a 5×5 mm horizontal sample area is about 200 μm. Several nondestructive inspection applications of the apparatus, including distinguishing between polyethylene grains of different densities, characterizing epoxy putties of distinct set times and evaluating the fat content percentages of milk powders, are also demonstrated. Compared with many previously published designs, the proposed design bears a simple structure and generates a B0 magnetic field parallel to the apparatus surface, simplifying apparatus construction and simultaneously rendering the selection of the radiofrequency coil relatively flexible.  相似文献   

2.
Dynamic slice-wise shimming improves B0 field homogeneity by updating shim coil currents for every slice in a multislice acquisition, producing better field homogeneity over a volume than can be obtained by a single static global shim. The first aim of this work was to evaluate the performance of slice-wise field-map-based second-order dynamic shimming in a human high-field 7 T clinical scanner vis-à-vis image based second order static global shimming. Another goal was to characterize eddy currents induced by second and third order shim switching. A final aim was to compare global and dynamic shimming through shim orders to elucidate the relative benefits of going to higher orders and to dynamic shim updating from a static shimming regime. An external hardware module was used to store and dynamically update slice-optimized shim values during multislice data acquisition. High-bandwidth multislice gradient echo scans with B0 field mapping and low-bandwidth single-shot echo planar scans were performed on phantoms and humans using second-order dynamic and static global shims. For the measurement of second and third order shim induced eddy currents, step response temporal phase changes of individual shims were measured and fit to shim harmonics spatially and to multiexponential decay functions temporally. Finally, an order-wise field-map-based comparison was performed with first, second and third order global static shimming, first and second order dynamic shimming, as well as combined second or third order global and first order dynamic shim. Dynamic shimming considerably improved B0 homogeneity compared to static global shimming both in phantoms and in human subjects, reducing image distortion and signal dropout. The unshielded second and third order shims generated strong B0 and self and cross-term eddy fields, with multiple time constants ranging from milliseconds to seconds. Field homogeneity improved with increasing order of shim, with dynamic shimming performing better than global shimming. Hybrid global and dynamic shimming approach yielded field homogeneity better than global static shims but worse than dynamic shims.  相似文献   

3.
We have studied the temporal instability of a high field resistive Bitter magnet through nuclear magnetic resonance (NMR). This instability leads to transverse spin decoherence in repeated and accumulated NMR experiments as is normally performed during signal averaging. We demonstrate this effect via Hahn echo and Carr--Purcell--Meiboom--Gill (CPMG) transverse relaxation experiments in a 23-T resistive magnet. Quantitative analysis was found to be consistent with separate measurements of the magnetic field frequency fluctuation spectrum, as well as with independent NMR experiments performed in a magnetic field with a controlled instability. Finally, the CPMG sequence with short pulse delays is shown to be successful in recovering the intrinsic spin--spin relaxation even in the presence of magnetic field temporal instability.  相似文献   

4.
We study the construction of superconducting permanent magnets by RE123 bulk materials and the investigation of these industrial applications such as a magnetic separation. A bulk magnet can generate strong magnetic fields exceeding 2 T, which is the limit of ordinary iron-cored electromagnets, in a compact device with a low running cost. A magnetic field distribution of the bulk magnet is a cone shape, and it contributes to an increase of magnetic force which is proportional to the product of a magnetic field and its gradient. It is important to evaluate magnetic force when the application of the bulk magnet is discussed. In this paper, two Gd123 bulk materials of 65 mm in diameter were magnetized using a pair of superconducting bulk magnet system and three-axis components of magnetic flux density (Bx,⋅By, and Bz) in an open space between the magnetic poles were scanned with pitch of 2 mm in each direction. From these measured data, the axial and radial components of magnetic force factor, BzdBz/dz and BrdBr/dr, were calculated. At 10 mm gap, the BzdBz/dz value reached 180.6 T2/m for a field of 2.33 T, which is comparable to Bz = 6.76 T for a common 10 T–100 mm∅ superconducting magnet.  相似文献   

5.
The necessity of simulations in design of superconducting dipole magnets is due to the following circumstances. First, the critical current as a function of the magnetic field I c(B) for the multicore superconducting cable which drops strongly requires the knowledge of the value of maximum magnetic field “felt” by its coils for estimation of the working current of the magnet. Second, for choosing the optimal number of coils of the winding (1 or 2) and the working current of the magnet, the ratio of B max for the inner and outer layers of the dipole magnet winding should be known. Since usually the length of the dipole magnet exceeds many times its transverse size, in this work all calculations of B(x, y) are performed in the transverse plane crossing the center of the magnet. The field at the central point is chosen to be B(0, 0) = 2 T (this is the characteristic working value close to the maximum value in the dipole magnet of this type). In this work, the results of calculation of B(x, y) for single-and double-layered windings with 8 and 16 coils from circular hollow cable are presented.  相似文献   

6.
The main magnetic fields of mobile nuclear magnetic resonance (NMR) magnets differ from those of conventional NMR and magnetic resonance imaging (MRI) magnets. In the Halbach magnet, the main field B 0 is perpendicular to the longitudinal axis, the symmetry of the current distribution with respect to the symmetry of the magnetic field differs from that in conventional target-field applications, and the current distribution on the coil surface cannot be expressed in terms of periodic basis functions. To obtain the winding pattern of the coil, an efficacious target-field approach. The surface of a coil is divided into small discrete elements, where each element is represented by a magnetic dipole. From the stream function of the elements, the resultant magnetic field is calculated. The optimization strategy follows an objective function defined by the power dissipation or efficiency of the coil. This leads to the optimum stream function on the coil surface, whose contour lines define the winding patterns of the coil. This paper shows winding patterns designed of shim coils for Halbach magnet and illustrates the craft of a shim coil using flexible printed circuit board. The performance of the coils is verified by simulating the fields they produce over the sensitive volume.  相似文献   

7.
An open permanent magnet system with vertical B0 field and without self-shielding can be quite susceptible to perturbations from external magnetic sources. B0 variation in such a system located close to a subway station was measured to be greater than 0.7 μT by both MRI and a fluxgate magnetometer. This B0 variation caused image artifacts. A navigator echo approach that monitored and compensated the view-to-view variation in magnetic resonance signal phase was developed to correct for image artifacts. Human brain imaging experiments using a multislice gradient-echo sequence demonstrated that the ghosting and blurring artifacts associated with B0 variations were effectively removed using the navigator method.  相似文献   

8.
We constructed an electro-static positron beam apparatus. We fabricated a simple spin-polarimeter composed of a permanent magnet with a surface magnetic field of 0.65 T and an iron pole piece. The longitudinal spin-polarization of the positron beam was determined to be 0.3 by analyzing the magnetic field dependence of the Doppler broadening of annihilation radiation from a fused silica specimen. The effect of spin rotation was examined using an iron poly-crystal and a simple E × B filter.  相似文献   

9.
A new pulsed field gradient multi-echo imaging technique to encode position in the phase of every echo generated by a CPMG sequence in the presence of a strongly inhomogeneous static magnetic field is presented. It was applied to improve the sensitivity in an imaging experiment by adding the echo train acquired during the CPMG sequence and to spatially resolve relaxation times of inhomogeneous specimens using single-sided probes. The sequence was implemented in a new bar-magnet MOUSE equipped with a gradient coil system to apply a pulsed magnetic field with a constant gradient along one spatial coordinate. An important reduction by a factor larger than two orders of magnitude in the acquisition time was obtained compared to the previously published single-point imaging technique.  相似文献   

10.
Resonance relaxation displacements of dislocations in NaCl crystals placed in crossed static and alternating ultralow magnetic fields in the electron paramagnetic resonance scheme are discussed. The Earth’s magnetic field BEarth ≈ 50μT and other fields in the range of 26–261 μT are used as the static field. New strongly anisotropic properties of the effect have been revealed. Frequency spectra including numerous peaks of paths at low pump frequencies beginning with 10 kHz, as well as the quartet of equidistant peaks at high frequencies (~1.4 MHz at B=BEarth), have been measured. The effect is also observed in the pulsed pump field with a resonance duration of ~0.5 μs. Resonance changes have been detected in the microhardness of ZnO, triglycine sulfate, and potassium hydrogen phthalate crystals after their exposure in the Earth’s magnetic field in the same electron paramagnetic resonance scheme.  相似文献   

11.
In analysis of transverse relaxation time (T 2) curves in a Carr-Purcell-Meiboom-Gill (CPMG) experiment in a multicomponent system originating from measurements of oil and water in rock cores, where internal magnetic field gradients broaden the line widths significantly, there is very little direct information to be extracted of the different components contributing to the totalT 2 relaxation time curve. From the study of rock cores saturated with different amounts of crude oil and water, we show that with an optimised experimental setup it is possible to extract information from the nuclear magnetic resonance response that is not resolved by any other methods. This setup combines pulsed field gradient methods with the CPMG experiment utilizing data from both rock cores and bulk oil and water. Then it becomes feasible to separate the signals from oil and water where the two-dimensional inverse Laplace transform ordinarily seems to fail.  相似文献   

12.
Nuclear magnetic resonance on oriented nuclei (NMR-ON) on 59Fe isotope in Ni was performed. The magnetic hyperfine splitting frequency of was determined to be ν(B 0?=?0)?=?48.32 (2) MHz. Using the known magnetic moment the magnetic hyperfine field was deduced as B HF?=???28.32 (5) T. The effective nuclear spin-lattice relaxation time was also measured. The measured value is compared with experimental values of 3d-impurity in nickel host.  相似文献   

13.
The Hall coefficient RH of n-type CuInSe2 single crystals is measured between 10 and 300 K in pulsed magnetic field up to 35 T. The threshold field Bth, above which the magnetic freezeout starts to occur, varies linearly with temperature. From the analysis of the temperature dependence of electron concentration in the activation regime above 100 K at different field values, it is established that the density of states effective mass is independent of the magnetic field B and the activation energy ED, above around 6 T, varies as B1/3. Similar B1/3 dependence of the magnetoresistance in the high magnetic field regime, reported earlier in the same material, suggests that theoretical work that could explain this coincidence is needed.  相似文献   

14.
We report the first observation and study of the photon echo in Er3+:LuLiF4. The energy transition is 4 I 15/24 F 9/2 (λ = 6536 Å). The density of ErF3 is 0.025 wt %. The operation temperature is 1.9 K. Measurements were made at low (up to 1200 Oe) and even zero external magnetic fields. We studied the behavior of the photon echo intensity vs. the magnetic field magnitude and direction about the crystal axis C and vs. the laser pulse separation t 12 and observed an exponential growth and then, after a certain plateau, an exponential decrease in the photon echo intensity as a function of magnetic field upon increasing the magnetic field from zero. The parameters describing the exponential growth and decrease are independent of the direction of magnetic field. The value of the magnetic field (~20–200 Oe) at which the echo intensity is maximal and the value of the maximum itself decrease with increasing pulse separation t 12 and the angle Θ between the magnetic field and crystal axis. The echo intensity decreases exponentially with increasing Θ. The parameter describing the exponential decrease is independent of the magnitude of the field. The echo intensity as a function of pulse separation shows exponential decay. The phase relaxation time depends on the magnitude and direction of the magnetic field. T 2 is equal to 202 ± 16 ns at zero magnetic field. A phenomenological formula is suggested, which qualitatively presents the mentioned dependences, and the polarization properties of the backward photon echo in this crystal are studied. Because the ion of trivalent erbium is an optimum data carrier, the above results show that fine control of the multichannel transfer of processed optical information may be achieved by weak magnetic fields.  相似文献   

15.
To a high-Tc superconducting (HTS) maglev system which needs large levitation force density, the magnetized bulk high-Tc superconductor (HTSC) magnet is a good candidate because it can supply additional repulsive or attractive force above a permanent magnet guideway (PMG). Because the induced supercurrent within a magnetized bulk HTSC is the key parameter for the levitation performance, and it is sensitive to the magnetizing process and field, so the magnetized bulk HTSC magnets with different magnetizing processes had various levitation performances, not only the force magnitude, but also its force relaxation characteristics. Furthermore, the distribution and configuration of the induced supercurrent are also important factor to decide the levitation performance, especially the force relaxation characteristics. This article experimentally investigates the influences of different magnetizing processes and trapped fields on the levitation performance of a magnetized bulk HTSC magnet with smaller size than the magnetic inter-pole distance of PMG, and the obtained results are qualitatively analyzed by the Critical State Model. The test results and analyses of this article are useful for the suitable choice and optimal design of magnetized bulk HTSC magnets.  相似文献   

16.
The CPMG sequence has been extremely useful for efficient measurements of NMR signal, spin-spin relaxation, and diffusion, particularly in inhomogeneous magnetic fields, such as when samples are outside the magnet and RF coil. Due to the inaccuracy of the pulses and the off-resonance effects, the CPMG echoes have contributions from the Hahn echo as well as signals that are similar to stimulated echoes. The systematic understanding of the CPMG pulse sequence requires decomposing the magnetization dynamics into different coherence pathways. In this paper, we describe a method to classify the CPMG coherence pathways and illustrate the nature of these types of pathways. This classification shows that direct echo and stimulated echoes are the major contribution to the CPMG signal. It also provides a clear understanding of the effect of restricted diffusion in porous media.  相似文献   

17.
The single-sided NMR-MOUSE sensor that operates in highly inhomogeneous magnetic fields is used to record a CPMG 1H transverse relaxation decay by CPMG echo trains for a series of cross-linked natural rubber samples. Effective transverse relaxation rates 1/T2,short and 1/T2,long were determined by a bi-exponential fit. A linear dependence of transverse relaxation rates on cross-link density is observed for medium to large values of cross-link density. As an alternative to multi-exponential fits the possibility to analyze the dynamics of soft polymer network in terms of multi-exponential decays via the inverse Laplace transformation was studied. The transient regime and the effect of the T1/T2 ratio in inhomogeneous static and radiofrequency magnetic fields on the CPMG decays were studied numerically using a dedicated C++ program to simulate the temporal and spatial dependence of the CPMG response. A correction factor T2/T2,eff is derived as a function of the T1/T2 ratio from numerical simulations and compared with earlier results from two different well logging devices. High-resolution T1T2 correlations maps are obtained by two-dimensional Laplace inversion of CPMG detected saturation recovery curves. The T1T2 experimental correlations maps were corrected for the T1/T2 effect using the derived T2/T2,eff correction factor.  相似文献   

18.
A method for quantitative T2 imaging is presented which covers the large range of T2 values in plants (5 to 2000 ms) simultaneously. The transverse relaxation is characterized by phase-sensitive measurement of many echo images in a multi-echo magnetic resonance imaging sequence. Up to 1000 signal-containing echo images can be measured with an inter-echo time of 2.5 ms at 0.47 T. Separate images of water density and of T2 are obtained. Results on test samples, on the cherry tomato and on the stem of giant hogweed are presented. The effects of field strength, spatial resolution and echo time on the observed T2 values is discussed. The combination of a relatively low magnetic field strength, short echo time and medium pixel resolution results in excellent T2 contrast and in images hardly affected by susceptibility artifacts. The characterization of transverse relaxation by multi-echo image acquisition opens a new route for studies of water balance in plants.  相似文献   

19.
An HTSC powder sample with grain (particle) diameter of 20–50 μm placed in a dc magnetic field B 0 and cooled to a temperature below the superconducting transition temperature was exposed to the radiofrequency (rf) pulsed magnetic field B (B B 0) at a carrier frequency of 30.7 MHz. Stable echo signals were recorded which followed different rf-pulse trains. This phenomenon has the following mechanism. The rf magnetic field stimulates fluxoid oscillations on the HTSC grain surface, which are transformed into lattice oscillations through the pinning centers and induce a propagating sound wave. The second-order nonlinearity with respect to the gradient of the crystal lattice deviation from the equilibrium position taken into account in the sound wave equation yields the dependence of the crystal lattice natural frequency on the amplitude and length of the pulses which excite these oscillations. This dependence is responsible for the emergence of echo signals.  相似文献   

20.
A magnetic filed relaxation at the center of a pulse-magnetized single-domain Y–Ba–Cu–O superconductor at 78 K has been studied. In case of a weak magnetization, the magnetic flux density increases logarithmically and normalized relaxation rate defined as S = −d(lnB)/d(lnt) is negative (S = −0.037). When an external magnetic field magnitude increases, the relaxation rate first decreases in absolute value, then changes sign (becomes positive, S > 0) and after reaching some maximum finally reduces to a very small value. Non-monotonous dependence of S vs. Ha is explained by a non-homogeneous local temperature distribution during a pulse magnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号