首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The ion bombardment-induced release of particles from a metal surface is investigated using energetic fullerene cluster ions as projectiles. The total sputter yield as well as partial yields of neutral and charged monomers and clusters leaving the surface are measured and compared with corresponding data obtained with atomic projectile ions of similar impact kinetic energy. It is found that all yields are enhanced by about one order of magnitude under bombardment with the C60+ cluster projectiles compared with Ga+ ions. In contrast, the electronic excitation processes determining the secondary ion formation probability are unaffected. The kinetic energy spectra of sputtered particles exhibit characteristic differences which reflect the largely different nature of the sputtering process for both types of projectiles. In particular, it is found that under C60+ impact (1) the energy spectrum of sputtered atoms peaks at significantly lower kinetic energies than for Ga+ bombardment and (2) the velocity spectra of monomers and dimers are virtually identical, a finding which is in pronounced contrast to all published data obtained for atomic projectiles. The experimental findings are in reasonable agreement with recent molecular dynamics simulations.  相似文献   

2.
Ion bombardment of pure water ice by Au+ monoatomic and Au3 + and C60 + polyatomic projectiles results in the emission of two series of water cluster ions-(H2O)n + and (H2O)nH+-with n ranging from 1 to >40. The cluster ion yields are very significantly higher under polyatomic ion bombardment than when using an Au+ primary ion. The yield of the protonated water species (H2O)nH+ is found to be enhanced by increasing ion fluence. C60 + bombardment results in a very dramatic increase in the (H2O)nH+ yield and decrease in the yield of (H2O)n +. Au3 + also significantly increased the yield of protonated species relative to the non-protonated but to a lesser extent than C60 +. Bombardment by Au+ also increased the yield of protonated species but to a very much smaller extent. The hypothesis that the protonated species may enhance the yield of [M+H]+ from solute molecules in solution has been investigated using two amino acids, alanine and arginine, and a nucleic base, adenine. The data suggest that the protons produced by the sputtering of water ice are depleted in the presence of these solutes and concurrently the yields of solute-related [M+H]+ and immonium secondary ions are greatly enhanced. These yield enhancements are analysed in the light of other possible contributors such as increased rates of sputtering under polyatomic beams and increased secondary ion yields as a consequence of solute dispersion. It is concluded that enhanced proton attachment is occurring in polyatomic sputtered frozen aqueous solutions.  相似文献   

3.
4.
Peptide-doped trehalose thin films have been characterized by bombardment with energetic cluster ion beams of C60+ and Aux+ (x = 1, 2, 3). The aim of these studies is to acquire information about the molecular sputtering process of the peptide and trehalose by measurement of secondary ion mass spectra during erosion. This system is important since uniform thin films of approximately 300 nm thickness can be reproducibly prepared on a Si substrate, allowing detailed characterization of the resulting depth profile with different projectiles. The basic form of the molecular ion intensity as a function of ion dose is described by a simple analytical model. The model includes parameters such as the molecular sputtering yield, the damage cross section of the trehalose or the peptide, and the thickness of a surface layer altered by the projectile. The results show that favorable conditions for successful molecular depth profiling are achieved when the total sputtering yield is high and the altered layer thickness is low. Successful molecular depth profiles are achieved with all of the cluster projectiles, although the degree of chemical damage accumulation was slightly lower with C60. With C60 bombardment, the altered layer thickness of about 20 nm and the damage cross section of about 5 nm2 are physically consistent with predictions of molecular dynamics calculations available for similar chemical systems. In general, the model presented should provide guidance in optimizing experimental parameters for maximizing the information content of molecular depth profiling experiments with complex molecular thin film substrates.  相似文献   

5.
The rigid tris- and bis(catecholamide) ligands H(6)A, H(4)B and H(4)C form tetrahedral clusters of the type M(4)L(4) and M(4)L(6) through self-assembly reactions with tri- and tetravalent metal ions such as Ga(III), Fe(III), Ti(IV) and Sn(IV). General design principles for the synthesis of such clusters are presented with an emphasis on geometric requirements and kinetic and thermodynamic considerations. The solution and solid-state characterization of these complexes is presented, and their dynamic solution behavior is described. The tris-catecholamide H(6)A forms M(4)L(4) tetrahedra with Ga(III), Ti(IV), and Sn(IV); (Et(3)N)(8)[Ti(4)A(4)] crystallizes in R3(-)c (No. 167), with a = 22.6143(5) A, c = 106.038(2) A. The cluster is a racemic mixture of homoconfigurational tetrahedra (all Delta or all Lambda at the metal centers within a given cluster). Though the synthetic procedure for synthesis of the cluster is markedly metal-dependent, extensive electrospray mass spectrometry investigations show that the M(4)A(4) (M = Ga(III), Ti(IV), and Sn(IV)) clusters are remarkably stable once formed. Two approaches are presented for the formation of M(4)L(6) tetrahedral clusters. Of the bis(catecholamide) ligands, H(4)B forms an M(4)L(6) tetrahedron (M = Ga(III)) based on an "edge-on" design, while H(4)C forms an M(4)L(6) tetrahedron (M = Ga(III), Fe(III)) based on a "face-on" strategy. K(5)[Et(4)N](7)[Fe(4)C(6)] crystallizes in I43(-)d (No. 220) with a = 43.706(8) A. This M(4)L(6) tetrahedral cluster is also a racemic mixture of homoconfigurational tetrahedra and has a cavity large enough to encapsulate a molecule of Et(4)N(+). This host-guest interaction is maintained in solution as revealed by NMR investigations of the Ga(III) complex.  相似文献   

6.
The spontaneous and photoactivated reactions between Ga(2) and H(2) in a matrix of solid Ar at 12 K have been followed by using IR spectroscopy and have been shown to give access to several isomers of the subvalent hydride Ga(2)H(2). We now present Raman spectra for this system, to complete its characterization on the basis of vibrational spectra. In addition, the differences between the reactivity of a Ga atom and a Ga(2) dimer toward H(2) are evaluated. The matrix isolation experiments have shown that Ga(2) reacts spontaneously with H(2,) at 12 K, to give the cyclic subvalent hydride Ga(micro-H)(2)Ga (D(2h) symmetry), which can be transformed into two other isomers of Ga(2)H(2) by selective photoactivation. Interestingly, the spontaneous reaction is subject to a marked isotopic effect. In total, the experimental results provide detailed information about the reaction mechanism. In contrast to Ga(2), Ga atoms do not react spontaneously with H(2); on photoactivation they instead yield the radical species GaH(2). The quantum chemical calculations presented herein start with an analysis of the structures and relative energies of the relevant species at the MP2 level, by using extended basis sets, and lead on to a discussion of the correlation diagrams for both reactions. Finally, CASSCF and MRCI methods, in combination with moderate-sized basis sets, were employed to analyze in detail the mechanisms of the two reactions. It will be shown that the computational results, in concert with the experimental findings, provide a satisfying explanation of the contrasting reactivities of Ga and Ga(2).  相似文献   

7.
为了在分子层次上揭示相关催化反应的机理,人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究.相比于过渡金属氧化物团簇阳离子,阴离子对一些碳氢化合物的活性弱得多,因此研究还很少.在本工作中,我们通过激光溅射产生钒氧团簇阴离子VxOy-,产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6)在一个快速流动反应管中进行反应,飞行时间质谱用来检测反应前后的团簇分布.在VxOy-与烷烃的反应中,生成了产物V2O6H-和V4O11H-;在与烯烃的反应中,产生了相应的吸附产物V4O11X-(X=C2H4或C3H6).密度泛函理论计算表明:V2O6-和V4O1-1可以活化烷烃(C2H6和C4H10)的C-H键,也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-),C-H键活化与环加成反应都需经历可以克服的反应能垒.理论计算与实验观测结果相符合.V2O6-和V4O1-1团簇都具有氧原子自由基(O·或O-)的成键特征,活性O-物种也经常出现在钒氧催化剂表面,因而本研究在分子水平上,揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

8.
In ab initio calculations a finite graphitic cluster model is often used to approximate the interaction energy of a water molecule with an infinite single-layer graphitic surface (graphene). In previous studies, the graphitic cluster model is a collection of fused benzene rings terminated by hydrogen atoms. In this study, the effect of using fluorine instead of hydrogen atoms for terminating the cluster model is examined to clarify the role of the boundary. The interaction energy of a water molecule with the graphitic cluster was computed using ab initio methods at the MP2 level of theory and with the 6-31G(d = 0.25) basis set. The interaction energy of a water molecule with graphene is estimated by extrapolation of two series of increasing size graphitic cluster models (C(6n2)H(6n) and C(6n2)F(6n), n = 1-3). Two fixed orientations of water molecule are considered: (a) both hydrogen atoms of water pointing toward the cluster (mode A) and (b) both hydrogen atoms of water pointing away from the cluster (mode B). The interaction energies for water mode A are found to be -2.39 and -2.49 kcal/mol for C(6n2)H(6n) and C(6n2)F(6n) cluster models, respectively. For water mode B, the interaction energies are -2.32 and -2.44 kcal/mol for C(6n2)H(6n) and C(6n2)F(6n) cluster models, respectively.  相似文献   

9.
Gallium complexes containing bridging phenyl groups were prepared and characterized. Treatment of triphenylgallium with 3,5-dimethylpyrazole, 3,5-diphenylpyrazole, or 3,5-di-tert-butylpyrazole in a 2:1 stoichiometry afforded the phenyl-bridged complexes (C6H5)2Ga(mu-Me2pz)(mu-C6H5)Ga(C6H5)2 (62%), (C6H5)2Ga(mu-Ph2pz)(mu-C6H5)Ga(C6H5)2.C7H8 (62%), or (C6H5)2Ga(mu-tBu2pz)(mu-C6H5)Ga(C6H5)2 (40%), respectively, as colorless or off-white crystalline solids. These complexes were characterized by spectral and analytical methods, X-ray crystallography, bridge-terminal exchange kinetics, and molecular orbital calculations for simplified models. The molecular structure of (C6H5)2Ga(mu-Me2pz)(mu-C6H5)Ga(C6H5)2 consists of a dimethylpyrazolato ligand with a diphenylgallium group bonded to each nitrogen atom. A phenyl group acts as a bridge between the two gallium atoms. The kinetics of bridge-terminal phenyl exchange was determined by 13C NMR spectroscopy between -30 and +30 degrees C, and afforded the following range of activation parameters: DeltaH = 6.0-8.9 kcal/mol, DeltaS = -23.1 to -32.0 eu, and DeltaG(298) = 15.5-15.8 kcal/mol. The large, negative values of DeltaS imply ordered transition states relative to the ground state, and rotation along the N-GaPh3 vector without gallium-nitrogen bond cleavage. Molecular orbital calculations were conducted at the B3LYP/6-311G(d,p) level of theory on the simplified model H2Ga(mu-pz)(mu-C6H5)GaH2. The predicted out-of-plane phenyl group orientation arises from electronic interactions, in which hybridized orbitals on the phenyl group create delocalized molecular orbitals. However, the energy difference between a planar Ga2N2C ring and one with the bent carbon atom is only 1.77 kcal/mol, implying that the molecular orbitals provide little stabilization to the out-of-plane phenyl ligand. The combined results suggest that the close proximity of the gallium atoms is the principal determinant of the bridging phenyl interactions, and that complexes of the heavier group 13 elements with bridging hydrocarbon ligands are likely to be more accessible than the current state of the literature would suggest.  相似文献   

10.
C(60) was reacted in the ionization chamber of a mass spectrometer under electron impact (EI) with aldehydes, RCHO (R = Ph, p-FC(6)H(4), F(5)C(6), p-MeOC(6)H(4), α-thienyl, o-HOC(6)H(4), o-BrC(6)H(4), m-BrC(6)H(4) and t-Bu), with the transfer of R? radicals and with Me?-transfer from i-PrCHO and t-BuCHO. Paramagnetic fullerene derivatives were stabilized by the addition of the next R? radical or a hydrogen atom, or hydrogen or bromine atom loss. A detailed study showed that the reaction between C(60) and PhCHO occurred via a homolytic mechanism that matches one reported earlier for the reaction with acetone. This suggests the generality of the mechanism for the reactions of fullerenes with other species in ionization chambers under EI at ca 300°C. All aldehydes, except one, had radicals at the carbonyl group which were different from those in the ketones examined earlier in the reactions. This expanded the variety of radicals which can be transferred to fullerenes during reactions in ionization chambers under EI. Due to this and the hydrogen atom at the CO group of aldehydes, some reactions occurred that were not found for the ketones: the formation of cyclic products C(60)COC(6)H(4) and C(60)OC(6)H(4) for PhCHO, o-BrC(6)H(4)CHO and o-HOC(6)H(4)CHO, respectively, and HC(60)Ph for o- and m-BrC(6)H(4)CHO. The reaction with α- formylthiophen gives the first example of transferring an aromatic heterocyclic radical to C(60) in an ionization chamber under EI. C(70) reacted with PhCHO, p-FC(6)H(4)CHO and i- PrCHO similarly to C(60). The results for the reactions of C(60) with PhCHO and with i- PrCHO were compared with those in solution under UV irradiation. Incomplete but reasonable coincidence was found; in both modes, the addition of Ph?, PhCO? and Me? radicals to C(60) occurred, whereas some other products were formed in solution, and the explanation is given as to why this occurred. This conformity supports the hypothesis based on the results of kindred reactions with ketones and organomercurials: the results of EI-initiated homolytic reactions between fullerenes and other compounds in an ionization chamber can predict the reactivity of the fullerenes toward them in solution.  相似文献   

11.
The extraction of gallium(III) with newly prepared 5-alkyloxymethyl-8-quinolinol derivatives with alkyl substituent at the 2-position in 8-quinolinol moiety has been studied. The Ga(III)-5-octyloxymethyl-8-quinolinol (HO(8)Q), Ga(III)-2-methyl-5-octyloxymethyl-8-quinolinol (HMO(8)Q), Ga(III)-2-methyl-5-hexyloxymethyl-8-quinolinol (HM-O(6)Q), and Ga(HI)-2-n-butyl-5-hexyloxymethyl-8-quinolinol (HNBO(6)Q) complexes extracted in heptane from a perchloric acid medium were Ga(O(8)Q)(3), Ga(OH)(H(2)O)(MO(8)Q)(2), Ga(OH)(H(2)O)(MO(6)Q)(2) and Ga(OH)H(2)O)(NBO(6)Q)(2), respectively. The 2-tert-butyl-5-hexyloxymethyl-8-quinolinol did not exhibit any reactivity toward gallium(III). The extraction constants for Ga(O(8)Q)(3) (K(ex) = [Ga(O(8)Q)(3)](org) [H(+)](3)/[Ga(3+)][HO(8)Q](org)(3)), Ga(OH)(H(2)O)(MO(8)Q)(2) (K(ex) = [Ga(OH) (H(2)O)(MO(8)Q)(2)](org) [H(+)](3)/[Ga(3+)][HMO(8)Q](org)(2)), Ga(OH)(H(2)O)(2)(MO(6)Q)(2) and Ga(OH)(H(2)O)(NBO(6)Q)(2), which were extracted in heptane from an acidic solution, are 10(3.21 +/- 0.12), 10(-4.24 +/- 0.16), 10(-3.84 +/- 0.16) and 10(-4.07 +/- 0.07), respectively at I = 0.1 M and 25 degrees C. HNBO(6)Q exhibited very high selectivity toward gallium(III) in the presence of aluminum(III). Even in the presence of a 100 fold excess of aluminum(III) to gallium(III) (1.43 x 10(-5) M), gallium(III) was completely extracted and the distribution ratio of aluminum(III) was found to be less than 2.0 x 10(-3).  相似文献   

12.
Scanning tunneling microscopy data of a mixed monolayer comprised of a 40:60 ratio of H8Si8O12 and C6H13-H7Si8O12 clusters on gold are presented. The images display a composite monolayer surface with well-defined domain regions of the individual components. Holes present at face-centered cubic (fcc) sites of the starting Au/H7Si8O12 adsorbate layer indicate the location of active sites for impinging C6H13-H7Si8O12 clusters. Adsorption of a C6H13-H7Si8O12 cluster likely yields a mobile hydrogen atom available to recombine with and desorb an adjacent H8Si8O12 cluster. Hydrogen atom diffusion along substrate [121] directions is the proposed pattern formation mechanism of the mixed monolayer. Imaging of the spherosiloxane cluster domains identifies a novel terrace-based active site located in the fcc regions of the Au(111) 23 x square root3 surface reconstruction.  相似文献   

13.
The sputtering properties of two representative cluster ion beams in secondary ion mass spectrometry (SIMS), C(60)(+) and Au(3)(+), have been directly compared. Organic thin films consisting of trehalose and dipalmitoylphosphatidylcholine (DPPC) are employed as prototypical targets. The strategy is to make direct comparison of the response of a molecular solid to each type of the bombarding cluster by overlapping the two ion beams onto the same area of the sample surface. The ion beams alternately erode the sample while keeping the same projectile for spectral acquisition. The results from these experiments are important to further optimize the use of cluster projectiles for SIMS molecular depth profiling experiments. For example, Au(3)(+) bombardment is found to induce more chemical damage as well as Au implantation when compared with C(60)(+). Moreover, C(60)(+) is found to be able to remove the damage and the implanted Au effectively. Discussions are also presented on strategies of enhancing sensitivity for imaging applications with cluster SIMS.  相似文献   

14.
为了在分子层次上揭示相关催化反应的机理, 人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究. 相比于过渡金属氧化物团簇阳离子, 阴离子对一些碳氢化合物的活性弱得多, 因此研究还很少. 在本工作中, 我们通过激光溅射产生钒氧团簇阴离子VxOy, 产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6) 在一个快速流动反应管中进行反应, 飞行时间质谱用来检测反应前后的团簇分布. 在VxOy与烷烃的反应中, 生成了产物V2O6H-和V4O11H-; 在与烯烃的反应中, 产生了相应的吸附产物V4O11X-(X=C2H4或C3H6). 密度泛函理论计算表明: V2O-6和V4O-11可以活化烷烃(C2H6和C4H10)的C—H键, 也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-), C—H键活化与环加成反应都需经历可以克服的反应能垒. 理论计算与实验观测结果相符合. V2O-6和V4O-11团簇都具有氧原子自由基(O·或O-)的成键特征, 活性O-物种也经常出现在钒氧催化剂表面, 因而本研究在分子水平上, 揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

15.
为了在分子层次上揭示相关催化反应的机理, 人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究. 相比于过渡金属氧化物团簇阳离子, 阴离子对一些碳氢化合物的活性弱得多, 因此研究还很少. 在本工作中, 我们通过激光溅射产生钒氧团簇阴离子VxOy, 产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6) 在一个快速流动反应管中进行反应, 飞行时间质谱用来检测反应前后的团簇分布. 在VxOy与烷烃的反应中, 生成了产物V2O6H-和V4O11H-; 在与烯烃的反应中, 产生了相应的吸附产物V4O11X-(X=C2H4或C3H6). 密度泛函理论计算表明: V2O-6和V4O-11可以活化烷烃(C2H6和C4H10)的C—H键, 也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-), C—H键活化与环加成反应都需经历可以克服的反应能垒. 理论计算与实验观测结果相符合. V2O-6和V4O-11团簇都具有氧原子自由基(O·或O-)的成键特征, 活性O-物种也经常出现在钒氧催化剂表面, 因而本研究在分子水平上, 揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

16.
为了在分子层次上揭示相关催化反应的机理, 人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究. 相比于过渡金属氧化物团簇阳离子, 阴离子对一些碳氢化合物的活性弱得多, 因此研究还很少. 在本工作中, 我们通过激光溅射产生钒氧团簇阴离子VxOy, 产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6) 在一个快速流动反应管中进行反应, 飞行时间质谱用来检测反应前后的团簇分布. 在VxOy与烷烃的反应中, 生成了产物V2O6H-和V4O11H-; 在与烯烃的反应中, 产生了相应的吸附产物V4O11X-(X=C2H4或C3H6). 密度泛函理论计算表明: V2O-6和V4O-11可以活化烷烃(C2H6和C4H10)的C—H键, 也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-), C—H键活化与环加成反应都需经历可以克服的反应能垒. 理论计算与实验观测结果相符合. V2O-6和V4O-11团簇都具有氧原子自由基(O·或O-)的成键特征, 活性O-物种也经常出现在钒氧催化剂表面, 因而本研究在分子水平上, 揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

17.
为了在分子层次上揭示相关催化反应的机理, 人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究. 相比于过渡金属氧化物团簇阳离子, 阴离子对一些碳氢化合物的活性弱得多, 因此研究还很少. 在本工作中, 我们通过激光溅射产生钒氧团簇阴离子VxOy, 产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6) 在一个快速流动反应管中进行反应, 飞行时间质谱用来检测反应前后的团簇分布. 在VxOy与烷烃的反应中, 生成了产物V2O6H-和V4O11H-; 在与烯烃的反应中, 产生了相应的吸附产物V4O11X-(X=C2H4或C3H6). 密度泛函理论计算表明: V2O-6和V4O-11可以活化烷烃(C2H6和C4H10)的C—H键, 也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-), C—H键活化与环加成反应都需经历可以克服的反应能垒. 理论计算与实验观测结果相符合. V2O-6和V4O-11团簇都具有氧原子自由基(O·或O-)的成键特征, 活性O-物种也经常出现在钒氧催化剂表面, 因而本研究在分子水平上, 揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

18.
为了在分子层次上揭示相关催化反应的机理, 人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究. 相比于过渡金属氧化物团簇阳离子, 阴离子对一些碳氢化合物的活性弱得多, 因此研究还很少. 在本工作中, 我们通过激光溅射产生钒氧团簇阴离子VxOy, 产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6) 在一个快速流动反应管中进行反应, 飞行时间质谱用来检测反应前后的团簇分布. 在VxOy与烷烃的反应中, 生成了产物V2O6H-和V4O11H-; 在与烯烃的反应中, 产生了相应的吸附产物V4O11X-(X=C2H4或C3H6). 密度泛函理论计算表明: V2O-6和V4O-11可以活化烷烃(C2H6和C4H10)的C—H键, 也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-), C—H键活化与环加成反应都需经历可以克服的反应能垒. 理论计算与实验观测结果相符合. V2O-6和V4O-11团簇都具有氧原子自由基(O·或O-)的成键特征, 活性O-物种也经常出现在钒氧催化剂表面, 因而本研究在分子水平上, 揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

19.
为了在分子层次上揭示相关催化反应的机理, 人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究. 相比于过渡金属氧化物团簇阳离子, 阴离子对一些碳氢化合物的活性弱得多, 因此研究还很少. 在本工作中, 我们通过激光溅射产生钒氧团簇阴离子VxOy, 产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6) 在一个快速流动反应管中进行反应, 飞行时间质谱用来检测反应前后的团簇分布. 在VxOy与烷烃的反应中, 生成了产物V2O6H-和V4O11H-; 在与烯烃的反应中, 产生了相应的吸附产物V4O11X-(X=C2H4或C3H6). 密度泛函理论计算表明: V2O-6和V4O-11可以活化烷烃(C2H6和C4H10)的C—H键, 也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-), C—H键活化与环加成反应都需经历可以克服的反应能垒. 理论计算与实验观测结果相符合. V2O-6和V4O-11团簇都具有氧原子自由基(O·或O-)的成键特征, 活性O-物种也经常出现在钒氧催化剂表面, 因而本研究在分子水平上, 揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

20.
为了在分子层次上揭示相关催化反应的机理, 人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究. 相比于过渡金属氧化物团簇阳离子, 阴离子对一些碳氢化合物的活性弱得多, 因此研究还很少. 在本工作中, 我们通过激光溅射产生钒氧团簇阴离子VxOy, 产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6) 在一个快速流动反应管中进行反应, 飞行时间质谱用来检测反应前后的团簇分布. 在VxOy与烷烃的反应中, 生成了产物V2O6H-和V4O11H-; 在与烯烃的反应中, 产生了相应的吸附产物V4O11X-(X=C2H4或C3H6). 密度泛函理论计算表明: V2O-6和V4O-11可以活化烷烃(C2H6和C4H10)的C—H键, 也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-), C—H键活化与环加成反应都需经历可以克服的反应能垒. 理论计算与实验观测结果相符合. V2O-6和V4O-11团簇都具有氧原子自由基(O·或O-)的成键特征, 活性O-物种也经常出现在钒氧催化剂表面, 因而本研究在分子水平上, 揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号