首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theoretical model of a rough surface in a d-wave superconductor is studied for the general case of arbitrary strength of electron scattering by an impurity layer covering the surface. Boundary conditions for quasiclassical Eilenberger equations are derived at the interface between the impurity layer and the d-wave superconductor. The model is applied to the self-consistent calculation of the surface density of states and the critical current in d-wave Josephson junctions. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 3, 242–246 (10 February 1999) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

2.
A theoretical study of the fluctuation conductivity above Tc (paraconductivity) is reported for a d-wave superconductor with resonant scattering impurities. A d-wave system is modeled by tight-binding electrons in the two-dimensional squared lattice, and the impurity scattering is treated in the T-matrix approximation in a unitary limit. In calculating the Aslamazov–Larkin (AL) and the Maki–Thompson (MT) terms, we also consider effects of a short-wavelength cutoff in the fluctuation spectrum. The d-wave character in the AL and MT terms manifests itself to renormalization effects on the fluctuation amplitude and reduced temperature, whereas an anomalous-MT term is absent. The present calculations can describe fairly well experiments on the paraconductivity in zinc-doped cuprate superconductors provided that effects of a total-energy cutoff are taken into account.  相似文献   

3.
Triplet superconductors such as Sr2RuO4 and NaxCoO2·yH2O are now found to be p-wave (kx ± iky) or f-wave ((kx ± iky)cos ckz) superconductors. Kee phenomenologically suggested that in these p-wave or f-wave superconductors, two half-quantum vortices (HQVs) become stable. Using Bougoliubov–de Gennes equation with the Fourier-Bessel expansion, we analyze quasi-particle excitations around an HQV at one end of the d-soliton for both p-wave and f-wave superconductors. We find that the bound state peak in the total local density of states around the HQV in f-wave superconductors becomes rather low compared to that around a singly quantized vortex. This is because, when flux and spin of the Cooper pairs are parallel, local density of states of quasi-particles shows bound state at zero energy. On the other hand, when flux and spin are anti-parallel, there is no phase singularity in the order parameter.  相似文献   

4.
Composite superconducting structures with d- and s-wave superconductors, d-dots, can be used as two state devices. Their functions depend on structures of the spontaneous magnetic field, which appears because of the anisotropy of d-wave superconductivity. Solving two-components Ginzburg–Landau equation, we have investigated magnetic field structures for d-dots with smaller and larger holes around the corners of d-wave superconducting region. And we argued the effect of holes on the magnetic structures.  相似文献   

5.
We present mean-field calculations for the in-plane optical conductivity, the superfluid density, and the electronic Raman susceptibility in quasi two-dimensional systems possessing a ground state with two competing order parameters: d-wave density wave (dDW) and d-wave superconductor (dSC). In the coexisting dDW+dSC phase we calculate the frequency dependence of these correlation functions in the presence of impurity scattering in the unitary limit, relevant to zinc-doped cuprate superconductors.  相似文献   

6.
Thermal conductivity κ xx(T) under a field is investigated in d x2 - y2-wave superconductors and isotropic s-wave superconductors by the linear response theory, using a microscopic wave function of the vortex lattice states. To study the origin of the different field dependence of κxx(T) between higher and lower temperature regions, we analyze the spatially-resolved thermal conductivity around a vortex at each temperature, which is related to the spectrum of the local density of states. We also discuss the electric conductivity in the same formulation for a comparison. Received 8 December 2001 and Received in final form 20 March 2002 Published online 6 June 2002  相似文献   

7.
The symmetry classification of possible singlet and also triplet states in the case of the 2-dim square lattice, and 3-dim tetragonal and orthorhombic lattices is examined. If particle-hole symmetry is present then an additional symmetry classification is possible. However in the lower symmetry crystal structures that actually occur, no distinction on symmetry grounds can be drawn between usuals-wave, extendeds-wave and some of thed-wave states.  相似文献   

8.
The effect of many magnetic impurities in symmetric chiral p-wave superconducting nanoloops is investigated by numerically solving the BdG equations self-consistently. Two magnetic impurities can lead to the appearance of two impurity bound levels close to the Fermi level. The arising bound states can cross the Fermi level at the same impurity strength for the case of two independent midway impurities, while multiple zero-energy states can be obtained at two separated values of impurity strength when two independent edge impurities are present. Moreover, the multiple zero modes can only show up for appropriate relative positions between two edge impurities due to the quantum interference effect. Particularly, for some appropriate strength of two independent midway impurities, the impurity bound levels cross the Fermi level twice with increasing threaded flux, while the multiple zero modes can not emerge in the flux evolution.  相似文献   

9.
We study theoretically the effect of impurity scattering in f-wave (or E2u) superconductors. The quasi-particle density of states of f-wave superconductor is very similar to the one for d-wave superconductor as in hole-doped high T c cuprates. Also in spite of anisotropy in Δ( ), both the reduced superfluid density and the reduced electronic thermal conductivity is completely isotropic. Received 11 October 2000  相似文献   

10.
We present a quasi-classical theory of rough surface effects on unconventional BCS pairing states. We reinterpret and generalize the randomly rippled wall model for rough surfaces such that can describe the surface scattering ranging from the specular limit to the diffusive limit. We give a formal solution of the quasi-classical Green's function which already satisfies the boundary condition in a slab geometry. In the diffusive limit, our result correctly recovers the diffusive boundary condition for the GL equation in thep-wave state given by Ambegaokar, deGennes and Ranner. Some applications top-wave andd-wave states are discussed.  相似文献   

11.
We present a theoretical framework that accounts for the new DJ and DsJ mesons measured in the open-charm sector. These resonances are properly described if considered as a mixture of conventional P-wave quark-antiquark states and four-quark components. The narrowest states are basically P-wave quark-antiquark mesons, while the dominantly four-quark states are shifted above the corresponding two-meson threshold. We study the electromagnetic decay widths as basic tools to scrutiny their nature.  相似文献   

12.
G. E. Volovik 《JETP Letters》1999,70(9):609-614
The energy levels of fermions bound to the vortex core are considered for the general case of chiral superconductors. There are two classes of chiral superconductivity: in the class I superconducting state the axisymmetric singly quantized vortex has the same energy spectrum of bound states as in an s-wave superconductor: E=(n+1/2)ω0, with integral n. In class II the corresponding spectrum is E=nω0 and thus contains a state with exactly zero energy. The effect of a single impurity on the spectrum of bound states is also considered. For class I the spectrum acquires the doubled period ΔE=2ω0 and consists of two equidistant sets of levels, in accordance with A. I. Larkin and Yu. N. Ovchinnikov, Phys. Rev. B 57, 5457 (1998). For the class II states the spectrum is not influenced by a single impurity if the same approximation is applied. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 9, 601–606 (10 November 1999) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

13.
压力下应变异质结中施主杂质态的Stark效应   总被引:2,自引:0,他引:2       下载免费PDF全文
张敏  班士良 《物理学报》2008,57(7):4459-4465
对应变GaN/AlxGa1-xN异质结系统,考虑理想界面突变势垒,引入简化相干势近似,采用变分法讨论了流体静压力下外界电场对束缚于界面附近的浅杂质态结合能的影响.对GaN为衬底的闪锌矿应变异质结,分别计算了(001)和(111)取向时杂质态的结合能随压力、杂质位置、电场强度以及组分的变化关系.结果表明,杂质态结合能随流体静压力呈近线性变化.电场对杂质态的Stark效应则随杂质位置不同而呈现谱线蓝、红移动.此外,还讨论了在不同压力情况下,Al组分对杂质结合能的影响.当杂质处于GaN材料中且距界面较远时,Al组分的增加使电子的二维特性增强,从而使结合能增大,且压力加剧增幅的增加;当杂质处于AlxGa1-xN材料中,Al组分的增加削弱了杂质与电子间的库仑相互作用,故而结合能降低. 关键词xGa1-xN异质结')" href="#">GaN/AlxGa1-xN异质结 杂质态 压力 Stark效应  相似文献   

14.
The approximately analytical scattering state solutions of the l-wave Klein-Gordon equation with the unequal scalar and vector Hulthén potentials are carried out by an improved new approximate scheme to the centrifugal term. The normalized analytical radial wave functions of the l-wave Klein-Gordon equation with the mixed Hulthén potentials are presented and the corresponding calculation formula of phase shifts is derived. It is well shown that the energy levels of the continuum states reduce to those of the bound states at the poles of the scattering amplitude. Some useful figures are plotted to show the improved accuracy of our results and two special cases for s-wave (l=0) and for l=0 and equal scalar and vector Hulthén potentials are also studied briefly.  相似文献   

15.
We study the effect of a single nonmagnetic impurity on the recently discovered (K,Tl)Fe(x)Se(2) superconductors, within both a toy two-band model and a more realistic five-band model. We find that, out of five types of pairing symmetry under consideration, only the d(x(2)-y(2))-wave pairing gives rise to impurity resonance states. The intragap states have energies far away from the Fermi energy. The existence of these intragap states is robust against the presence or absence of interband scattering. However, the interband scattering does tune the relative distribution of local density of states at the resonance states. All these features can readily be accessed by STM experiments, and are proposed as a means to test the pairing symmetry of the new superconductors.  相似文献   

16.
The approximately analytical bound and scattering state solutions of the arbitrary l-wave Klein-Gordon equation for the mixed Manning-Rosen potentials are carried out by an improved new approximation to the centrifugal term. The normalized analytical radial wave functions of the l-wave Klein-Gordon equation with the mixed Manning-Rosen potentials are presented and the corresponding energy equations for bound states and phase shifts for scattering states are derived. It is shown that the energy levels of the continuum states, reduce to the bound states of those at the poles of the scattering amplitude. Some useful figures are plotted to show the improved accuracy of our results and the special case for wave is studied briefly.   相似文献   

17.
The effects of multi-impurity quantum interference on triangular lattice f-wave superconductors are studied by self-consistently solving Bogoliubov-de Gennes equations within the t?t′?J?V model. An overall phase diagram is presented, which shows that f-wave superconductivity dominates near 0.3 doping. Rich phenomena are induced by quantum interference effects, such as periodic modulations in charge orders, pyramid frustum structures, and a magnetic moment reverse transition, which are qualitatively different from the single-impurity case. We also examine the local density of states to show how localized quasiparticle states are created at or near the impurity sites, which can be directly measured by scanning tunneling microscopy experiments.  相似文献   

18.
We study the effect of local impurity and the neutron scattering spectrum based on the five-orbital model obtained by the first principle calculation for iron pnictides. We find that the interband impurity scattering is induced by the complex multiorbital structure. This fact means that the fully-gapped sign-reversing s-wave state, which is predicted by spin-fluctuation theories, is very fragile against impurities. The result suggests a reasonable possibility that the fully-gapped s-wave state without sign reversal (s++-wave) would be realized in dirty iron pnictides. We also find that broad peak structure observed in the neutron scattering measurements can be explained by the s++-wave state.  相似文献   

19.
We investigate the electronic transport for an impurity-doped armchair-edge graphene nanoribbon (AGNR), with 7 or 8 dimer lines along zigzag direction, sandwiched between two normal leads. By using the standard nonequilibrium Green’s function technique, it is demonstrated that, the impurity influence on the transport properties for system with semiconducting 7-AGNR system is more sensitive than that for one with metallic 8-AGNR system in the vicinity of the impurity energy level. In particular, in the absence of impurity the density of states (DOS) and linear conductance G possess a small zero value interval for 7-AGNR system and a large nonzero plateau for 8-AGNR one, respectively. Interestingly, as impurity included the DOS and G show a single sharp resonant peak around the impurity energy level for 7-AGNR system due to resonant tunneling, while a small dip appears in the same position for 8-AGNR system due to the antiresonance states. Moreover, we have also inspected the behavior of the differential conductance upon varying the impurity concentration for the systems. The findings here may suggest it is more favorable to fabricate an electric switch with high on-off ratio by using an impurity-assisted semiconducting AGNR.  相似文献   

20.
Based upon the tight-binding formalism a model of a high-Tc superconductor with isotropic and anisotropic attractive interactions is considered analytically. Symmetry facets of the group C4v are included within a method of successive transformations of the reciprocal space. Complete sets of basis functions of C4v irreducible representations are given. Plausible spin-singlet and spin-triplet superconducting states are classified with regard to the chosen basis functions. It is displayed that pairing interaction coefficients and the dispersion relation, which can be characterized by the parameter η= 2t1/t0, have a diverse and mutually competing influence on the value of the transition temperature. It is also shown that in the case of a nearly half-filled conduction band and an anisotropic pairing interaction the spin-singlet d-wave symmetry superconducting state is realized for small values of the parameter η, whereas in the opposite limit, for sufficiently large values, the spin-triplet p-wave symmetry superconducting state has to be formed. This result cannot be obtained within the Van Hove scenario or BCS-type approaches, where the p-wave symmetry superconducting state absolutely dominates. The specific heat jump and the isotope shift as functions of the parameter η are assessed and discussed for the d-wave symmetry singlet and the p-wave symmetry triplet states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号