首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A gas jet injected horizontally into a descending vertical water flow has two stable states corresponding to the presence or absence of a gas pocket on the injection wall. Injecting multiple parallel jets gives rise to complex interactions dominated by two phenomena: the presence or absence of a gas pocket and the periodic movements of the jets. The very low frequency of these movements (approx. 1 Hz) is essentially correlated with crossflow velocity and jet spacing. Different types of interaction were observed over a wide range of experimental conditions. In particular, a zone of interdependence was evidenced where interaction between jets leads to the coexistence of jets with and without a gas pocket. The influence of different experimental parameters was defined. A better understanding of the mechanism of jet interaction is obtained, especially the conditions of movement of vortices and the significance of the water flow confined between the jets which modifies their mean dimensions (20 to 40% increase in length and height, decrease of width without coalescence). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The purpose of this study is to investigate means of controlling the interior ballistic stability of a bulk-loaded propellant gun(BLPG).Experiments on the interaction of twin combustion gas jets and liquid medium in a cylindrical stepped-wall combustion chamber are conducted in detail to obtain time series processes of jet expansion,and a numerical simulation under the same working conditions is also conducted to verify the reliability of the numerical method by comparing numerical results and experimental results.From this,numerical simulations on mutual interference and expansion characteristics of multiple combustion gas jets(four,six,and eight jets) in liquid medium are carried out,and the distribution characteristic of pressure,velocity,temperature,and evolutionary processes of Taylor cavities and streamlines of jet flow Held are obtained in detail.The results of numerical simulations show that when different numbers of combustion gas jets expand in liquid medium,there are two different types of vortices in the jet flow field,including corner vortices of liquid phase near the step and backflow vortices of gas phase within Taylor cavities.Because of these two types of vortices,the radial expansion characteristic of the jets is increased,while changing numbers of combustion gas jets can restrain Kelvin-Helmholtz instability to a certain degree in jet expansion processes,which can at last realize the goal of controlling the interior ballistic stability of a BLPG.The optimum method for both suppressing Kelvin-Helmholtz instability and promoting radial expansion of Taylor cavities can be determined by analyzing the change of characteristic parameters in a jet flow field.  相似文献   

3.
The interaction between multiple incompressible air jets has been studied numerically and experimentally. The numerical predictions have been first validated using experimental data for a single jet configuration. The spreading features of five unequal jets in the configuration of one larger central jet surrounded by four smaller equi‐distant jets, have been studied, for different lateral spacing ratios of 1.5, 2.0 and 2.5 and a central jet Reynolds number of 1.24×105 (corresponding to a Mach number of 0.16). Flow of five equal jets has also been simulated, for the sake of comparison. The jet interactions commence at an axial distance of about 3–4 diameters and complete by an axial distance of about 10 diameters for the lowest spacing ratio of 1.5. For larger spacing ratios, the length required for the start and completion of jet interaction increase. Peripheral jets bend more towards the central jet and merge at a smaller distance, when their sizes are smaller than that of the central jet. The entrainment ratio for multiple jets is higher than that for a single jet. Excellent agreement is observed between the experimental data and theoretical predictions for both mean flow field and turbulent quantities, at regions away from the jet inlet. The potential core length and initial jet development, however, are not predicted very accurately due to differences in the assumed and actual velocity profiles at the jet inlet. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
The dynamic behavior of the near-field region in a coaxial variable property jet has been experimentally investigated under a swirling flow produced by rotating cylindrical inner and outer tubes, focusing on how the swirl of the outer jet affects the formation of a stagnation point in the swirling inner jet. The inner and outer jets rotate in the same direction. Air, CO2, or He is issued from the inner tube as a variable property jet, and air is issued from the outer tube in this work. In the case of a CO2 jet (a high-density, low-viscosity gas jet), a stagnation point flow is more easily formed than in the case of an air jet, and the stagnation point location is significantly lower than in that of the air jet. When the swirl of the outer jet is introduced, a stagnation point flow is more easily formed than in the case of a nonswirling outer jet, and the stagnation point location is much lower than in the case of a nonswirling outer jet. In the case of a He jet (a low-density and high-viscosity gas jet), the inner jet does not have a stagnation point flow, and its overall behavior remains nearly unchanged even under high swirl numbers of the inner and outer jets. These results clearly show that the density and viscosity differences between the inner and outer jets have a significant impact on the dynamic behavior of the near-field region in the coaxial swirling jet. The significant lowering of the stagnation point location can be physically explained by considering the theoretical equation obtained in this work.  相似文献   

5.
The structure of two colliding water jets containing small gas bubbles is studied experimentally. The effects of the separation distance between jets, as well as the orientation angle, on the spatial distribution of bubbles have been considered. Results on the global structure of the final jet and bubble properties have been obtained using a high-speed video camera, and measurements of the positions of coalescence events are presented. Jets are introduced through inclined pipes (with a diameter of 0.7 mm) into a large water tank to avoid wall effects. Inclination angle has been changed from 0° to 45° with respect to the horizontal, resulting in a 0° up to 90° impact angle between jets. Generation of bubbles is controlled by a T-junction device where a regular slug-flow is created prior to injection. Bubble sizes have been measured, and a mean diameter of around 1 mm has been obtained using high values of the liquid flow rate. In the studied range of separation distances between the bubbly jets, a more homogeneous dispersion of bubbles is created as the distance between jets is decreased and the momentum flux of each jet is increased. Higher numbers of coalescences are observed when using smaller distance between jets, and the obtained measurements revealed that the number of bubble coalescence events is reduced significantly using high values of liquid flow rates.  相似文献   

6.
Water submerged gas jets are characterized by the interplay of inertia and buoyancy forces and can exhibit diverse behaviors ranging from bubbly plumes to stable jets. In this work, direct measurements of the interfacial behavior of water-submerged gas jets, with Mach numbers ranging from subsonic to supersonic, were performed using high-speed digital photography and shadowgraphs. The results indicate that the jets have a preferential pinch-off position that can be attributed and correspond to the location of the maximum streamwise-velocity turbulence fluctuations. A new, experimentally determined jet penetration distance is proposed; the jetting length is taken as the jet length corresponding to a 99% probability of the gas-jet outer boundary being attached to the orifice during the sampling period. Using the shadowgraph analysis and this criterion, we determined that the electro-resistivity probe measurements, previously used to determine the jet penetration length, may be significantly biased. This is attributed to the inability of the probe measurements to distinguish between a continuous gas jet and advecting bubbles. In addition, based on a simple force-balance of the jet cross-section, we introduce a new scaling relationship for the jet penetration distance. This relationship shows that the jetting length scales with the square of the Froude number and compares well with the experimental observations. Finally, measurements of the gas jet boundary acceleration coupled with estimations of the internal gas jet velocity suggest that both Rayleigh–Taylor and Kelvin–Helmholtz mechanisms are nearly equally responsible for governing the jet boundary dynamics.  相似文献   

7.
The present investigation reports on the near field behavior of gas jets in a long confinement and points out the differences between this type of jet flow and those of free jets and jets in a short confinement.The jet, with a diameter of 8.73 mm, is aligned concentrically with a tube of 125 mm diameter; thus giving a confinement area ratio of 205. The arrangement forms part of the test section of an open-jet wind tunnel and this gives a confinement length-to-jet diameter ratio of 1,700. Experiments are carried out with carbon dioxide, air and helium/air jets at different jet velocities. Mean velocity and turbulence measurements are made of the jet near field using a one-color, one-component laser doppler velocimeter operating in the forward scatter mode. In addition, the turbulent shear field of an air jet is examined in more detail using hot-wire anemometers.In view of the long confinement, the presence of the jet is not being felt immediately at the tunnel exit. Consequently, the air column inside the tunnel is first compressed by the jet and then slowly pushed out of the tunnel. This behavior causes the jet to spread rapidly and to decay quickly. As a result, an equilibrium turbulence field is established in the first two diameters of the jet. This equilibrium field bears striking similarity to that found in self-preserving, turbulent free jets and jets in short confinement and is independent of jet fluid densities and velocities. In terms of these characteristics, the near field of jets in a long confinement is very different from that found in free jets and jets in short confinements.  相似文献   

8.
Particle concentration and particle size distribution curves have been measured for particle-laden jets of silica gel powder for different loading ratios and air velocities using a Laser Diffraction Method (LDM) and a tomography data transform technique. It was found that the mean particle size at the outer edge of the jet decreases with increasing gas velocity, and that the jet widens with decreasing particle concentration and increasing gas velocity.  相似文献   

9.
The method of producing laminar submerged jets using a device, whose length is comparable with the jet diameter, is described. A submerged air jet, 0.12 m in diameter, produced by means of this technique is experimentally investigated in the Reynolds number range from 2000 to 13 000. Hot-wire anemometer measurements of the flow parameters and laser visualization of the flow are performed. It is shown that the device developed makes it possible to produce submerged jets with the laminar regions as long as 5.5 jet diameters. The initial regions of such jets can be used to study the development of disturbances in submerged jets, as well as used in medicine and engineering in organizing various gasdynamic curtains which produce zones with given properties with respect to purity and composition inside another gas media.  相似文献   

10.
Experiments with large diameter gravity driven impacting liquid jets   总被引:2,自引:0,他引:2  
Storr  G. J.  Behnia  M. 《Experiments in fluids》1999,27(1):60-69
 The phenomenon of a liquid jet released under gravity and falling through or impacting onto another liquid before colliding with an obstructing solid surface has been studied experimentally under isothermal conditions. Usually the jet diameter was sufficiently large to ensure jet coherency until collision. Direct flow visualization was used to study jets released into water pools with no air head space and jets impacting onto water pools after falling through an air head space. It is shown that distances predicting the onset of buoyancy and the entrainment of air using derivations from continuous plunging jets, are not applicable for impacting jets. The morphology of jet debris after collision with the solid surfaces correlates with the wetting properties of the jet liquid on the surface. Received: 28 November 1997 / Accepted: 21 May 1998  相似文献   

11.
The influence of cold air jet injection upon the film cooling of combustion chamber walls is investigated theoretically and experimentally. Considering the cold air jet acting like a cylinder in the combustion gas and film cooling streams, an equation can be derived theoretically which describes the disturbance of the film cooling effectiveness downstreams of the air jet injection. The experiments, where single cold air jets are injected normal to the film cooled test chamber wall, show considerable decreases of the film cooling effectiveness downstream of the injection points. The same effect is noted in real combustion chambers of aircraft gas turbine engines. Additional experiments with cylinders simulating the disturbance effect of the air jets prove the analogy consideration between jet and cylinder. The theoretically predicted cooling effectiveness is in agreement with own experiments as well as other test results.  相似文献   

12.
A computational fluid dynamics (CFD) model is used to investigate the hydrodynamics of a gas–solid fluidized bed with two vertical jets. Sand particles with a density of 2660 kg/m3 and a diameter of 5.0 × 10?4 m are employed as the solid phase. Numerical computation is carried out in a 0.57 m × 1.00 m two-dimensional bed using a commercial CFD code, CFX 4.4, together with user-defined Fortran subroutines. The applicability of the CFD model is validated by predicting the bed pressure drop in a bubbling fluidized bed, and the jet detachment time and equivalent bubble diameter in a fluidized bed with a single jet. Subsequently, the model is used to explore the hydrodynamics of two vertical jets in a fluidized bed. The computational results reveal three flow patterns, isolated, merged and transitional jets, depending on the nozzle separation distance and jet gas velocity and influencing significantly the solid circulation pattern. The jet penetration depth is found to increase with increasing jet gas velocity, and can be predicted reasonably well by the correlations of Hong et al. (2003) for isolated jets and of Yang and Keairns (1979) for interacting jets.  相似文献   

13.
A planar and instantaneous visualization study of high-speed gas jets and their airblast sprays was performed to qualitatively examine the different atomization performances of different gas nozzles. For the visualization of high-speed gas jets (with no liquid injected), Nd:YAG pulsed laser sheets imaged the clustered vapor molecules in the Rayleigh range (d?λ), condensed from the natural humidity during the isentropic gas expansion through a nozzle. This method visualized both underexpanded sonic gas jets from a converging nozzle (SN-Type) and overexpanded supersonic gas jets from a converging-diverging nozzle (CD-Type). When liquid is cross-injected, the same laser sheet images the spray droplets of relatively large sizes (d?λ). The present visualization results show that the SN-Type nozzle develops a wider spray than the CD-Type nozzle, quite probably because the SN-Type nozzle has a wider gas jet (in the absence of liquid) than the CD-Type. Also, the wider spray of the SN-Type nozzle lowers the probability of droplet coalescence and generates finer sprays compared to the CD-Type nozzle. These visualization results qualitatively agree with the previous quantitative finding of the different atomization characteristics of the two types of nozzles (Park et al. 1996).  相似文献   

14.
15.
The results of the experimental investigation of supersonic turbulent jets with local subsonic zones of forward and reverse flow exhausting into the ambient atmosphere or an outer stream, either parallel or transverse to the jet, are presented. Some gasdynamic features of the flows containing these zones, which have not been adequately addressed in the literature, are analyzed. Thus, supersonic flows with back pressure, e.g., highly overexpanded and underexpanded jet flows, and those upstream and downstream of a jet on the leeward side of a cone in a supersonic gas stream, are studied. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 143–150, January–February, 1998.  相似文献   

16.
17.
The dual-jet flow generated by a plane wall jet and a parallel offset jet at an offset ratio of d/w = 1.0 has been investigated using Particle Image Velocimetry (PIV). The particle images are captured, processed, and subsequently used to characterize the flow in terms of the 2D velocity and vorticity distributions. Statistical characteristics of the flow are obtained through ensemble averaging of 360 instantaneous velocity fields. Also presented is a time series of instantaneous flow fields to illustrate the dynamic interaction between the two jets. Results reveal that the near field of the flow is characterized by a periodic large-scale Karman-like vortex shedding similar to what would be expected in the wake of a bluff body. The existence of the Karman-like vortices results in periodic interactions between the two jets; in addition, these vortices produce noticeable impact on the jet outer layers, i.e., the free shear layer of the offset jet and the wall boundary layer of the wall jet. A schematic of vortex/shear layer interaction is proposed to illustrate the flow pattern.  相似文献   

18.
The behavior of compressible jets originated from initially turbulent pipe flows issuing in still air has been investigated at three different subsonic Mach numbers, 0.3, 0.6 and 0.9. Helium, nitrogen and krypton gases were used to generate the jet flows and investigate the additional effects of density on the flow structure. Particle image velocimetry, high-frequency response pressure transducers and thermocouples were used to obtain velocity, Mach number and total temperature measurements inside the flow field. The jets were formed at the exit of an adiabatic compressible frictional turbulent pipe flow, which was developing toward its corresponding sonic conditions inside the pipe, and continued to expand within the first four diameters distance after it exited the pipe. Theoretical considerations based on flow self-similarity were used to obtain the decay of Mach number along the centerline of the jets for the first time. It was found that this decay depends on two contributions, one from the velocity field which is inversely proportional to the distance from the exit and one from the thermal field which is proportional to this distance. As a result, a small non-linearity in the variation of the inverse Mach number with downstream distance was found. The decay of the Mach number at the centerline of the axisymmetric jets increases by increasing the initial Mach number at the exit of the flow for all jets. The decay of mean velocity at the centerline of the jets is also higher at higher exit Mach numbers. However, the velocity non-dimensionalized by the exit velocity seems to decrease faster at low exit Mach numbers, suggesting a reduced mixing with increasing exit flow Mach numbers. Helium jets were found to have the largest spreading rate among the three different gas jets used in the present investigation, while krypton jets had the lowest spreading rate. The spreading rate of each gas decreases with increasing its kinetic energy relatively to its internal energy.  相似文献   

19.
The calculation of supersonic ideal thermodynamically perfect gas jets discharging from a nozzle has been carried out previously in many studies (for example, [1, 2]) on the basis of the numerical method of characteristics. Here we give an approximate analytic solution of the problem of a supersonic jet discharging into a medium at rest or into a supersonic co-flowing stream.The author wishes to express his gratitude to G. G. Chernyi for his continued interest in this study.  相似文献   

20.
水下超音速气体射流胀鼓和回击的关联性研究   总被引:6,自引:0,他引:6  
阐述了水下超音速气体射流的实验研究结果. 用高速摄影仪实时记录了水下超音速气体射流喷射的状态, 清晰地演示了射流气体在上中游流域的演化过程. 具体分析了水下高速气体射流的动态不稳定性形貌, 并从实时记录的射流照片中统计测量出了胀鼓和回击随机频率.结果发现, 胀鼓频率越大, 回击频率越大; 胀鼓频率随着喷嘴的驻室压力与出口背压的比值增大而增大. 通过胀鼓与回击事件前后实验数据的对比分析表明其二者之间存在相关性: 胀鼓和回击均由射流内部压力振荡引发并且存在一定的随机性; 胀鼓是回击前的能量积聚一个前征和表现, 当胀鼓的振荡即能量积聚到一定程度后, 引发回击.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号