首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The reactivity of zinc and copper oxide nanoparticles was investigated upon their interaction with iron oxides. It was ascertained that, depending on the reaction conditions, nanoparticles of zinc and copper ferrites (ZnFe2O4 and CuFe2O4) or core/shell nanoparticles (Fe3O4/ZnO) are produced. Size, composition, and structure of the resulting nanoparticles were determined by transmission electron microscopy and X-ray diffraction analysis. The average size of zinc and copper ferrite nanoparticles was ascertained to be 9–10 and 2–3 nm, respectively. For core/shell Fe3O4/ZnO nanoparticles, the average size is 20 nm. It was experimentally proved that the photoluminescence radiative characteristics of ZnO nanoparticles are retained in core/shell Fe3O4/ZnO nanoparticles.  相似文献   

2.
The application of nanomaterials has gained considerable momentum in various fields in recent years due to their high reactivity, excellent surface properties and quantum effects in the nanometer range. The properties of zinc oxide (ZnO) vary with its crystallite size or particle size and often nanocrystalline ZnO is seen to exhibit superior physical and chemical properties due to their higher surface area and modified electronic structure. ZnO nanoparticles are reported to exhibit strong bacterial inhibiting activity and silver (Ag) has been extensively used for its antimicrobial properties since ages. In this study, Ag doped ZnO nanoparticles were synthesized by mechanochemical processing in a high energy ball mill and investigated for antimicrobial activity. The nanocrystalline nature of zinc oxide was established by X-ray diffraction (XRD) studies. It is seen from the XRD data obtained from the samples, that crystallite size of the zinc oxide nanoparticles is seen to decrease with increasing Ag addition. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) data also supported the nanoparticle formation during the synthesis. The doped nanoparticles were subjected to antimicrobial investigation and found that both increase in Ag content and decrease in particle size contributed significantly towards antimicrobial efficiency. It was also observed that Ag doped ZnO nanoparticles possess enhanced antimicrobial potential than that of virgin ZnO against the studied microorganisms of Escherichia coli and Staphylococcus aureus.  相似文献   

3.
In this work, zinc oxide (ZnO) nanoparticles (size <10 nm) were formed via precipitation in ethanolic solution. The zinc acetate and lithium hydroxide solutions in ethanol were mixed at 273 K temperatures under vigorous stirring. To study the effect of quantum dot (QD) coverage, we have prepared a colloidal suspension of capped CdSe QDs (size ~5 nm) by chemical route and anchored them to a nanoporous ZnO layer either by direct adsorption or through linker. Here a bifunctional molecule (mercaptopropionic acid, MPA, and thioglycolic acid, TGA) was previously adsorbed on the ZnO surface, which acted as a molecular cable. From TEM/SEM studies, it was observed that direct adsorption of CdSe QDs onto ZnO surface was not efficient. However, the bifunctional linker molecules particularly MPA facilitates binding of CdSe QDs to ZnO; and consequently, interparticle electron transfer is thus facilitated. The use of MPA linker despite of its long carbon chain also aids in the quenching of photoluminescence of CdSe on addition of ZnO in a more systematic manner indicating efficient charge transfer from CdSe into ZnO as compared with the without linker and with linker TGA case, respectively. Due to higher PL quenching and reduction in lifetime values, higher values of Stern–Volmer quenching constants were thus obtained for CdSe–ZnO composites with MPA as compared with TGA linker and without linker case, respectively. Nonlinear Stern–Volmer plots as observed for samples without linker case indicated heterogeneous quenching due to insufficient binding between CdSe QDs and ZnO. By means of spectroscopic (PL, UV–VIS, FTIR) and microscopic (TEM, SEM) techniques, we have demonstrated linker-dependent photosensitization mechanism of ZnO layers with CdSe QDs. Our data thus illustrate that interfacial-electron transfer kinetics in QD–linker–ZnO assemblies are almost independent of the length of alkyl-containing molecular linkers.  相似文献   

4.
Thirty-micrometer thick polyvinylidenefluoride (PVDF)–zinc oxide (ZnO) nanocomposite samples in the mass ratio of ZnO (1–6% (w/w)) have been prepared by solution mixing method. The nano- and microstructures of PVDF–ZnO nanocomposite of different mass ratios were characterized by using high-resolution techniques such as atomic force microscopy (AFM) and scanning electron microscopy (SEM). The SEM and AFM images show the presence of different components such as nanoparticles, amorphous and crystalline phases in nanocomposite samples. Dielectric properties of polymer nanocomposite based on PVDF and ZnO of different mass/% compositions have been studied to understand the molecular motion at different frequencies in the temperature range from 300 to 500 K. The permittivity of the nanocomposites decreases with frequency, while increases with the increasing temperature and ZnO content. The loss peak that disappeared at higher frequency is the remarkable result of this study.  相似文献   

5.
The conjugation between probe biomolecules and inorganic nanoparticles has been studied. Three different and biologically relevant proteins, bovine serum albumin (BSA), lysozyme (LSZ) and Ribonuclease A (RNAseA), have been selected as model systems because of their difference in size and isoelectric point. Zinc oxide nanoparticles, synthesized via sol–gel, have been thoroughly characterized by X-ray Photoelectron Spectroscopy, Scanning Electron Microscopy and X-ray Diffraction, and subsequently used as platforms for immobilization of the biomolecules. The interaction of the three proteins with the ZnO surface was performed in phosphate buffer solutions at pH 7.2 in order to mimic physiological fluids and was investigated through fluorescence experiments. The obtained results indicate that conjugation of BSA, LZS and RNAseA on the oxide nanoparticles was mostly dictated by the overall charge of the different proteins. Electrostatic bonds dominate the formation of the protein/ZnO conjugates, whereas the size of the proteins seems to play a negligible role under the adopted experimental conditions.  相似文献   

6.
This paper presents a surfactant-assisted complex sol–gel method for the controlled preparation of Zinc Oxide (ZnO) nanoparticles using zinc nitrate and citric acid as starting material. ZnO nanoparticles with a pure wurtzite structure were obtained after calcination at 773 K. The effects of the citric acid concentration, the pH, and the surfactants on the average particle size and morphology of the ZnO nanoparticles were investigated using X-ray diffraction and scanning electron microscopy. Well dispersed ZnO nanoparticles with a uniform size distribution were obtained using polyethylene glycol (PEG) 2000 as a surfactant. During sintering, the ZnO nanoparticles revealed isotropic growth below 1,373 K and anisotropic growth above 1,473 K. The particles’ activation energy was calculated to be 140 ± 6 kJ/mol between 773 and 1,373 K.  相似文献   

7.
A process was proposed for the synthesis of ZnO/MgO nanocomposites from alcoholic solutions by means or the consecutive precipitation of coprecipitation of alcoholic solutions of zinc acetate and magnesium with an alkali solution followed by annealing in the range 400–500°C. X-ray powder diffraction showed crystalline ZnO and MgO phases in the resulting composite. Zinc oxide particle sizes in the composite with magnesium oxide were determined by transmission electron microscopy and from X-ray diffraction peak broadening. The zinc oxide nanoparticle size was weakly affected by the molar ratio of zinc to magnesium and the concentration of the precipitated component. The ZnO exciton peak in cathodoluminescence spectra for nanocomposites synthesized at low temperatures (400 and 500°C) shifted toward the UV. At ≥600°C or higher, Mg1 ? x Zn x O solid solution was generated, as evidenced by X-ray diffraction and cathodoluminescence data.  相似文献   

8.
A method is proposed for obtaining copper-containing catalysts by means of mechanical mixing of previously formed monodispersed CuO nanoparticles (mean particle diameter 12 nm) with MgO. Higher activity was found for these catalysts in the oxidation of carbon monoxide than for the analogous copper-containing systems prepared by impregnation and deposition of cupric oxide nanoparticles from colloidal solution. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 44, No. 3, pp. 165–169, May–June, 2008.  相似文献   

9.
The effect of the method of production of ZnO (the sol-gel method, thermal decomposition of zinc salts, template synthesis) on the optical and photoluminescent characteristics of nanocomposites with an organic semiconducting polymer (MEH-PPV) was determined. It was shown that the presence of zinc oxide nanoparticles shifts the absorption and luminescence bands of MEH-PPV toward the blue side. This may be caused both by change in the conformation of the macromolecules during their interaction with the surface of the inorganic matrix and by the disturbing action of the ZnO particles on the position of the energy levels of the polymer. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 44, No. 6, pp. 331–337, November–December, 2008.  相似文献   

10.
Zinc oxide/poly(acrylic acid) (ZnO/PAA) multilayered hybrid films with different layer thicknesses were prepared by radio frequency magnetron sputtering. Zinc peroxide was used as precursor materials for the preparation of ZnO layers, since the zinc peroxide decomposes to ZnO during the film deposition. The films have a high transmittance in the visible region and exhibit visible photoluminescence emission. The band gap energy of the films—determined by the Tauc relationship—decreases with increasing layer thickness (3.40–3.36 eV) due to the increasing crystalline size of the ZnO particles. The morphological investigations showed that a real layered hybrid film structure formed.  相似文献   

11.
In this review, the importance of electrical arc discharge technique in liquids in synthesis of various nanostructures from carbon based materials to metal and metal oxide nanostructures with their general and specific properties, especially the photocatalytic performance of metal oxide nanostructures is studied. The effect of arc current on size distribution, morphology and physicochemical properties of metal and semiconductor nanostructures was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS) and UV–Vis spectroscopy. WO3 Cubic nanostructures with 30 nm mean particle size were formed during the discharge process in water. Discharge between zinc electrodes in water leads to formation of rod like and semi spherical ZnO nanostructures with 15–20 nm diameter range. ZrO2 nanoparticles were formed using zirconium electrodes in water. Photodegradation of Rhodamine B (Rh. B) shows that the as prepared nanostructures in this method have potential ability for environmental purifications. Also, using silver electrodes in water leads to formation of silver nanoparticles with 8–15 nm average particle size. Moreover, a novel method for synthesis of gold nanoparticles without using gold electrodes is presented. Finally, the future outlook of this technique in synthesis of various nanocrystalline materials is presented.  相似文献   

12.
It was found that ZnO nanocrystals have photocatalytic activity in the formation of CdS during the reduction of sulfur in the presence of cadmium acetate. It was shown that mesoporous spheres measuring 150–170 nm and consisting of CdS/ZnO particles measuring 5–8 nm are formed during the irradiation of ZnO particles measuring 5.5 nm. During the photodeposition of CdS by the action of light on nanorods produced by ultrasonic treatment of microcrystalline zinc oxide nanotubes of CdS 0.5–0.8 μm in length and 15–110 nm in internal diameter are formed. A mechanism, in which they appear at the ends of the ZnO nanorods and grow on the surface of the CdS/ZnO heterojunction, is proposed for the formation of the CdS nanotubes. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 4, pp. 215–219, July–August, 2007.  相似文献   

13.
We report a study on the effect of seeding on glass substrates with zinc oxide nanocrystallites towards the hydrothermal growth of ZnO nanorods from a zinc nitrate hexahydrate and hexamethylenetetramine solution at 95 °C. The seeding was done with pre-synthesized ZnO nanoparticles in isopropanol with diameters of about 6–7 nm as well as the direct growth of ZnO nanocrystallites on the substrates by the hydrolysis of pre-deposited zinc acetate film. The nanorods grown on ZnO nanoparticle seeds show uniform dimensions throughout the substrate but were not homogenously aligned vertically from the substrate and appeared like nanoflowers with nanorod petals. Nanorods grown from the crystallites formed in situ on the substrates displayed wide variations in dimension depending upon the preheating and annealing conditions. Annealing the seed crystals below 350 °C led to scattered growth directions whereupon preferential orientation of the nanorods perpendicular to the substrates was observed. High surface to volume ratio which is vital for gas sensing applications can be achieved by this simple hydrothermal growth of nanorods and the rod height and rod morphology can be controlled through the growth parameters.  相似文献   

14.
The effect of solvent composition on particle formation during flame spray pyrolysis of inexpensive metal-nitrates has been investigated for alumina, iron oxide, cobalt oxide, zinc oxide and magnesium oxide. The as-prepared materials were characterized by electron microscopy, nitrogen adsorption, X-ray diffraction (XRD) and disc centrifugation (XDC). The influence of solvent parameters such as boiling point, combustion enthalpy and chemical reactivity on formation of either homogeneous nanoparticles by evaporation/nucleation/coagulation (gas-to-particle conversion) or large particles through precipitation and conversion within the sprayed droplets (droplet-to-particle conversion) is discussed. For Al(2)O(3), Fe(2)O(3), Co(3)O(4) and partly also MgO, the presence of a carboxylic acid in the FSP solution resulted in homogeneous nanoparticles. This is attributed to formation of volatile metal carboxylates in solution as evidenced by attenuated total reflectance spectroscopy (ATR). For ZnO and MgO rather homogeneous nanoparticles were formed regardless of solvent composition. For ZnO this is attributed to its relatively low dissociation temperature compared to other oxides. While for MgO this is traced to the high decomposition temperature of Mg(NO(3))(2) together with Mg(OH)(2)?MgO transformations. Cobalt oxide (Co(3)O(4)) nanoparticles made by FSP were not aggregated but rather loosely agglomerated as determined by the excellent agreement between XRD- and XDC-derived crystallite and particle sizes, respectively, pointing out the potential of FSP to make non-aggregated particles.  相似文献   

15.
Aluminum doped zinc oxide (AZO) nanometric particles were synthesized by hydrothermal method. Aluminum nitrate hydrate, aluminum sec-butoxide and zinc nitrate hydrate were used as the starting materials, and n-propanol and 2-butanol were used as solvents. Ratio of Al2O3 in ZnO was kept at 10 wt%. Reaction was conducted in a Teflon autoclave at 175–225 °C for 5 h. Ratios of alcohol, H2O and HCl to zinc nitrate hydrate were altered and 6 different sets of parameters were investigated. Obtained products were subjected to powder-XRD, particle size measurement, TEM examination and AAS analysis. Single phase AZO particles were obtained at alcohol to zinc nitrate ratio of 35, acid to zinc nitrate ratio of 0.2, at 225 °C. Particle size was determined as 3.2 ± 0.4 nm from TEM examinations and as 1–2 nm from dynamic light scattering. Synthesized particles have amphiphilic character, thus they can be dispersed in both polar and non-polar media. It was seen from the UV-diffuse reflectance spectra that the AZO powder had low reflectance in the UV region and high reflectance in the visible region. The obtained powder has the potential to be utilized in the form of thin films for optical and electronic purposes.  相似文献   

16.
Undoped zinc oxide nanoparticles and Mn (5 atomic % & 10 atomic %) doped zinc oxide nanoparticles were prepared by soft chemical method. Antibacterial, antioxidant and anticancer activities in breast cancer cell line MDAMB231 of prepared nanoparticles were investigated. The nanoparticles were characterized using XRD, SEM, EDAX, UV–Vis, FT-IR, and room temperature PL Analysis. Antimicrobial activity was tested against both gram positive and gram negative human pathogens. The antioxidant potential of prepared nanoparticles was estimated using Phosphomolybdate and DPPH assay. The MTT assay was used for cytotoxicity evaluation of prepared nanoparticles against breast cancer cell line MDAMB231. XRD patterns confirmed the nanoparticles were crystallized hexagonal wurtzite structure with an average size of 38.95 ?nm. The absorption wavelength was observed at 361 ?nm in UV–Vis spectrum of Mn (10 atomic %) doped ZnO nanoparticles. The Mn (5 atomic %) doped ZnO nanoparticles exhibited significant antibacterial activity against the gram negative bacteria Escherichia coli, Klebsiella pneumonia at all concentrations. Undoped zinc oxide nanoparticles and Mn doped zinc oxide nanoparticles were effective against the breast cancer cell line MDAMB231.  相似文献   

17.
The ZnO/MgO solid samples containing the ZnO nanoparticles of controllable size were prepared using colloidal technique. The catalytic performance of the ZnO/MgO samples for the CO oxidation was measured. It was revealed that the rate of the CO oxidation reaction on the ZnO nanoparticles with variable average radius (2.01-2.29 nm) shows nonmonotonic dependence caused by the quantum-confinement effect.  相似文献   

18.
The freshly prepared water-wet amidoximated bacterial cellulose (Am-BC) serves as an effective nanoreactor to synthesis zinc oxide nanoparticles by in situ polyol method. The obtained ZnO/Am-BC nanocomposites have been characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The influence of the zinc acetate concentration on the morphologies and size ofZnO nanoparticles and the possible formation mechanism were discussed. The results indicated that uniform ZnO nanoparticles were homogeneously anchored on the Am-BC nanofibers through strong interaction between the hydroxyl and amino groups of Am-BC and ZnO nanoparticles. The loading content of ZnO nanoparticles is higher using Am-BC as a template than using the unmodified bacterial cellulose. The resultant nanocomposite synthesized at 0.05 wt% shows a high photocatalytic activity (92%) in the degradation of methyl orange.  相似文献   

19.
The polyaniline/zinc oxide (PANI/ZnO) nanocomposites were prepared by in situ polymerization of aniline monomer with ZnO nanomaterials and applied as a photocatalyst for the degradation of methylene blue (MB) dye. The morphological observations elicited the agglomerations of PANI sheets which occurred due to the interaction between PANI and ZnO nanomaterials in PANI/ZnO nanocomposites. As compared to pristine PANI, the UV–vis spectra exhibited that the absorption peak of ππ* transitions considerably shifted to higher wavelength at 360 nm from 325 nm in the nanocomposites. The photocatalytic activity results indicated the substantial degradation of MB dye by ~76% over the surface of PANI/ZnO nanocomposite catalyst under light illumination. The PANI/ZnO nanocomposites showed three times higher photocatalytic activity to MB dye degradation compared to pristine PANI might due to high photogenerated electron (ē)–hole (h+) pairs charge separation.  相似文献   

20.
The catalytic characteristics of systems prepared by mechanically mixing iron oxide nanoparticles, produced in the thermolysis of carboxylate complexes at 300–750°C, with aluminum oxide in the oxidation of CO were studied. It was shown that increase in the size of the iron oxide nanoparticles leads to decrease in the catalytic activity of the samples as a result of their different structural and textural characteristics, which change in relation to the synthesis conditions. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 42, No. 5, pp. 300–305, September–October, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号