首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first main theorem of this paper asserts that any \((\sigma , \tau )\)-derivation d, under certain conditions, either is a \(\sigma \)-derivation or is a scalar multiple of (\(\sigma - \tau \)), i.e. \(d = \lambda (\sigma - \tau )\) for some \(\lambda \in \mathbb {C} \backslash \{0\}\). By using this characterization, we achieve a result concerning the automatic continuity of \((\sigma , \tau \))-derivations on Banach algebras which reads as follows. Let \(\mathcal {A}\) be a unital, commutative, semi-simple Banach algebra, and let \(\sigma , \tau : \mathcal {A} \rightarrow \mathcal {A}\) be two distinct endomorphisms such that \(\varphi \sigma (\mathbf e )\) and \(\varphi \tau (\mathbf e )\) are non-zero complex numbers for all \(\varphi \in \Phi _\mathcal {A}\). If \(d : \mathcal {A} \rightarrow \mathcal {A}\) is a \((\sigma , \tau )\)-derivation such that \(\varphi d\) is a non-zero linear functional for every \(\varphi \in \Phi _\mathcal {A}\), then d is automatically continuous. As another objective of this research, we prove that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every Jordan \(\sigma \)-derivation \(d:\mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

2.
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates \(f_r(z):=f(rz)~(r<1)\). We show that this is not the case for the de Branges–Rovnyak spaces \(\mathcal{H}(b)\). More precisely, we exhibit a space \(\mathcal{H}(b)\) in which the polynomials are dense and a function \(f\in \mathcal{H}(b)\) such that \(\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty \). On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces \(\mathcal{H}(b)\). If \((h_n)\) is a sequence in \(H^\infty \) such that \(\Vert h_n\Vert _{H^\infty }\le 1\) and \(h_n(0)\rightarrow 1\), then \(\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0\) for all \(f\in \mathcal{H}(b)\). Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of \(H^\infty \), then the polynomials are dense in \(\mathcal{H}(b)\).  相似文献   

3.
4.
Fix sets X and Y, and write \(\mathcal P\mathcal T_{XY}\) for the set of all partial functions \(X\rightarrow Y\). Fix a partial function \({a:Y\rightarrow X}\), and define the operation \(\star _a\) on \(\mathcal P\mathcal T_{XY}\) by \(f\star _ag=fag\) for \(f,g\in \mathcal P\mathcal T_{XY}\). The sandwich semigroup \((\mathcal P\mathcal T_{XY},\star _a)\) is denoted \(\mathcal P\mathcal T_{XY}^a\). We apply general results from Part I to thoroughly describe the structural and combinatorial properties of \(\mathcal P\mathcal T_{XY}^a\), as well as its regular and idempotent-generated subsemigroups, \({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) and \(\mathbb E(\mathcal P\mathcal T_{XY}^a)\). After describing regularity, stability and Green’s relations and preorders, we exhibit \({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) as a pullback product of certain regular subsemigroups of the (non-sandwich) partial transformation semigroups \(\mathcal P\mathcal T_X\) and \(\mathcal P\mathcal T_Y\), and as a kind of “inflation” of \(\mathcal P\mathcal T_A\), where A is the image of the sandwich element a. We also calculate the rank (minimal size of a generating set) and, where appropriate, the idempotent rank (minimal size of an idempotent generating set) of \(\mathcal P\mathcal T_{XY}^a\)\({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) and \(\mathbb E(\mathcal P\mathcal T_{XY}^a)\). The same program is also carried out for sandwich semigroups of totally defined functions and for injective partial functions. Several corollaries are obtained for various (non-sandwich) semigroups of (partial) transformations with restricted image, domain and/or kernel.  相似文献   

5.
Let F be an \(L^2\)-normalized Hecke Maaß cusp form for \(\Gamma _0(N) \subseteq {\mathrm{SL}}_{n}({\mathbb {Z}})\) with Laplace eigenvalue \(\lambda _F\). If \(\Omega \) is a compact subset of \(\Gamma _0(N)\backslash {\mathrm{PGL}}_n/\mathrm{PO}_{n}\), we show the bound \(\Vert F|_{\Omega }\Vert _{\infty } \ll _{ \Omega } N^{\varepsilon } \lambda _F^{n(n-1)/8 - \delta }\) for some constant \(\delta = \delta _n> 0\) depending only on n.  相似文献   

6.
Let \({\mathcal {N}}_m\) be the group of \(m\times m\) upper triangular real matrices with all the diagonal entries 1. Then it is an \((m-1)\)-step nilpotent Lie group, diffeomorphic to \({\mathbb {R}}^{\frac{1}{2} m(m-1)}\). It contains all the integer matrices as a lattice \(\Gamma _m\). The automorphism group of \({\mathcal {N}}_m \ (m\ge 4)\) turns out to be extremely small. In fact, \(\mathrm {Aut}({\mathcal {N}})=\mathcal {I} \rtimes \mathrm {Out}({\mathcal {N}})\), where \(\mathcal {I}\) is a connected, simply connected nilpotent Lie group, and \(\mathrm {Out}({\mathcal {N}})={{\tilde{K}}}={(\mathbb {R}^*)^{m-1}\rtimes \mathbb {Z}_2}\). With a nice left-invariant Riemannian metric on \({\mathcal {N}}\), the isometry group is \(\mathrm {Isom}({\mathcal {N}})= {\mathcal {N}} \rtimes K\), where \(K={(\mathbb {Z}_2)^{m-1}\rtimes \mathbb {Z}_2}\subset {{\tilde{K}}}\) is a maximal compact subgroup of \(\mathrm {Aut}({\mathcal {N}})\). We prove that, for odd \(m\ge 4\), there is no infra-nilmanifold which is essentially covered by the nilmanifold \(\Gamma _m\backslash {\mathcal {N}}_m\). For \(m=2n\ge 4\) (even), there is a unique infra-nilmanifold which is essentially (and doubly) covered by the nilmanifold \(\Gamma _m\backslash {\mathcal {N}}_m\).  相似文献   

7.
The gradient descent method minimizes an unconstrained nonlinear optimization problem with \({\mathcal {O}}(1/\sqrt{K})\), where K is the number of iterations performed by the gradient method. Traditionally, this analysis is obtained for smooth objective functions having Lipschitz continuous gradients. This paper aims to consider a more general class of nonlinear programming problems in which functions have Hölder continuous gradients. More precisely, for any function f in this class, denoted by \({{\mathcal {C}}}^{1,\nu }_L\), there is a \(\nu \in (0,1]\) and \(L>0\) such that for all \(\mathbf{x,y}\in {{\mathbb {R}}}^n\) the relation \(\Vert \nabla f(\mathbf{x})-\nabla f(\mathbf{y})\Vert \le L \Vert \mathbf{x}-\mathbf{y}\Vert ^{\nu }\) holds. We prove that the gradient descent method converges globally to a stationary point and exhibits a convergence rate of \({\mathcal {O}}(1/K^{\frac{\nu }{\nu +1}})\) when the step-size is chosen properly, i.e., less than \([\frac{\nu +1}{L}]^{\frac{1}{\nu }}\Vert \nabla f(\mathbf{x}_k)\Vert ^{\frac{1}{\nu }-1}\). Moreover, the algorithm employs \({\mathcal {O}}(1/\epsilon ^{\frac{1}{\nu }+1})\) number of calls to an oracle to find \({\bar{\mathbf{x}}}\) such that \(\Vert \nabla f({{\bar{\mathbf{x}}}})\Vert <\epsilon \).  相似文献   

8.
Let \(C_1(H)\) denote the space of all trace class operators on an arbitrary complex Hilbert space H. We prove that \(C_1(H)\) satisfies the \(\lambda \)-property, and we determine the form of the \(\lambda \)-function of Aron and Lohman on the closed unit ball of \(C_1(H)\) by showing that
$$\begin{aligned} \lambda (a) = \frac{1 - \Vert a\Vert _1 + 2 \Vert a\Vert _{\infty }}{2}, \end{aligned}$$
for every a in \({C_1(H)}\) with \(\Vert a\Vert _1 \le 1\). This is a non-commutative extension of the formula established by Aron and Lohman for \(\ell _1\).
  相似文献   

9.
An n-normal operator may be defined as an \(n \times n\) operator matrix with entries that are mutually commuting normal operators and an operator \(T \in \mathcal {B(H)}\) is quasi-nM-hyponormal (for \(n \in \mathbb {N}\)) if it is unitarily equivalent to an \(n \times n\) upper triangular operator matrix \((T_{ij})\) acting on \(\mathcal {K}^{(n)}\), where \(\mathcal {K}\) is a separable complex Hilbert space and the diagonal entries \(T_{jj}\) \((j = 1,2,\ldots , n)\) are M-hyponormal operators in \(\mathcal {B(K)}\). This is an extended notion of n-normal operators. We prove a necessary and sufficient condition for an \(n \times n\) triangular operator matrix to have Bishop’s property \((\beta )\). This leads us to study the hyperinvariant subspace problem for an \(n \times n\) triangular operator matrix.  相似文献   

10.
Fix \(\delta \in (0,1]\), \(\sigma _0\in [0,1)\) and a real-valued function \(\varepsilon (x)\) for which \(\varlimsup _{x\rightarrow \infty }\varepsilon (x)\leqslant 0\). For every set of primes \(\mathcal {P}\) whose counting function \(\pi _\mathcal {P}(x)\) satisfies an estimate of the form
$$\begin{aligned} \pi _\mathcal {P}(x)=\delta \,\pi (x)+O\bigl (x^{\sigma _0+\varepsilon (x)}\bigr ), \end{aligned}$$
we define a zeta function \(\zeta _\mathcal {P}(s)\) that is closely related to the Riemann zeta function \(\zeta (s)\). For \(\sigma _0\leqslant \frac{1}{2}\), we show that the Riemann hypothesis is equivalent to the non-vanishing of \(\zeta _\mathcal {P}(s)\) in the region \(\{\sigma >\frac{1}{2}\}\).
For every set of primes \(\mathcal {P}\) that contains the prime 2 and whose counting function satisfies an estimate of the form
$$\begin{aligned} \pi _\mathcal {P}(x)=\delta \,\pi (x)+O\bigl ((\log \log x)^{\varepsilon (x)}\bigr ), \end{aligned}$$
we show that \(\mathcal {P}\) is an exact asymptotic additive basis for \(\mathbb {N}\), i.e. for some integer \(h=h(\mathcal {P})>0\) the sumset \(h\mathcal {P}\) contains all but finitely many natural numbers. For example, an exact asymptotic additive basis for \(\mathbb {N}\) is provided by the set
$$\begin{aligned} \{2,547,1229,1993,2749,3581,4421,5281\ldots \}, \end{aligned}$$
which consists of 2 and every hundredth prime thereafter.
  相似文献   

11.
Graham, Hamada, Kohr and Kohr studied the normalized time \(T\) reachable families \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\) of the Loewner differential equation, which are generated by the Carathéodory mappings with values in a subfamily \(\Omega \) of the Carathéodory family \({\mathcal {N}}_A\) for the Euclidean unit ball \({\mathbb {B}}^n\), where \(A\) is a linear operator with \(k_+(A)<2m(A)\) (\(k_+(A)\) is the Lyapunov index of \(A\) and \(m(A)=\min \{\mathfrak {R}\left\langle Az,z\right\rangle \big |z\in {\mathbb {C}}^n,\Vert z\Vert =1\}\)). They obtained some compactness and density results, as generalizations of related results due to Roth, and conjectured that if \(\Omega \) is compact and convex, then \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\) is compact and \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},ex\,\Omega )\) is dense in \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\), where \(ex\,\Omega \) denotes the corresponding set of extreme points and \(T\in [0,\infty ]\). We confirm this, by embedding the Carathéodory mappings in a suitable Bochner space.  相似文献   

12.
In this paper we are concerned with the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) (\(t\ge 0\)) of normalized biholomorphic mappings on the Euclidean unit ball \(\mathbb {B}^n\) in \({\mathbb {C}}^n\) that can be embedded in normal Loewner chains whose normalizations are given by time-dependent operators \(A\in \widetilde{\mathcal {A}}\), where \(\widetilde{\mathcal {A}}\) is a family of measurable mappings from \([0,\infty )\) into \(L({\mathbb {C}}^n)\) which satisfy certain natural assumptions. In particular, we consider extreme points and support points associated with the compact family \(\widetilde{S}^t_A(\mathbb {B}^n)\), where \(A\in \widetilde{\mathcal {A}}\). We prove that if \(f(z,t)=V(t)^{-1}z+\cdots \) is a normal Loewner chain such that \(V(s)f(\cdot ,s)\in \mathrm{ex}\,\widetilde{S}^s_A(\mathbb {B}^n)\) (resp. \(V(s)f(\cdot ,s)\in \mathrm{supp}\,\widetilde{S}^s_A(\mathbb {B}^n)\)), then \(V(t)f(\cdot ,t)\in \mathrm{ex}\, \widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\) (resp. \(V(t)f(\cdot ,t)\in \mathrm{supp}\,\widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\)), where V(t) is the unique solution on \([0,\infty )\) of the initial value problem: \(\frac{d V}{d t}(t)=-A(t)V(t)\), a.e. \(t\ge 0\), \(V(0)=I_n\). Also, we obtain an example of a bounded support point for the family \(\widetilde{S}_A^t(\mathbb {B}^2)\), where \(A\in \widetilde{\mathcal {A}}\) is a certain time-dependent operator. We also consider the notion of a reachable family with respect to time-dependent linear operators \(A\in \widetilde{\mathcal {A}}\), and obtain characterizations of extreme/support points associated with these families of bounded biholomorphic mappings on \(\mathbb {B}^n\). Useful examples and applications yield that the study of the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) for time-dependent operators \(A\in \widetilde{\mathcal {A}}\) is basically different from that in the case of constant time-dependent linear operators.  相似文献   

13.
We consider colorings of the pairs of a family \(\mathcal {F}\subseteq {{\mathrm{FIN}}}\) of topological type \(\omega ^{\omega ^k}\), for \(k>1\); and we find a homogeneous family \(\mathcal {G}\subseteq \mathcal {F}\) for each coloring. As a consequence, we complete our study of the partition relation \({\forall l>1,\, \alpha \rightarrow ({{\mathrm{top}}}\;\omega ^2+1)^2_{l,m}}\) identifying \(\omega ^{\omega ^\omega }\) as the smallest ordinal space \(\alpha <\omega _1\) satisfying \({\forall l>1,\, \alpha \rightarrow ({{\mathrm{top}}}\;\omega ^2+1)^2_{l,4}}\).  相似文献   

14.
Let \(\mathcal {F}\) be a quadratically constrained, possibly nonconvex, bounded set, and let \(\mathcal {E}_1, \ldots , \mathcal {E}_l\) denote ellipsoids contained in \(\mathcal {F}\) with non-intersecting interiors. We prove that minimizing an arbitrary quadratic \(q(\cdot )\) over \(\mathcal {G}:= \mathcal {F}{\setminus } \cup _{k=1}^\ell {{\mathrm{int}}}(\mathcal {E}_k)\) is no more difficult than minimizing \(q(\cdot )\) over \(\mathcal {F}\) in the following sense: if a given semidefinite-programming (SDP) relaxation for \(\min \{ q(x) : x \in \mathcal {F}\}\) is tight, then the addition of l linear constraints derived from \(\mathcal {E}_1, \ldots , \mathcal {E}_l\) yields a tight SDP relaxation for \(\min \{ q(x) : x \in \mathcal {G}\}\). We also prove that the convex hull of \(\{ (x,xx^T) : x \in \mathcal {G}\}\) equals the intersection of the convex hull of \(\{ (x,xx^T) : x \in \mathcal {F}\}\) with the same l linear constraints. Inspired by these results, we resolve a related question in a seemingly unrelated area, mixed-integer nonconvex quadratic programming.  相似文献   

15.
Denoising has to do with estimating a signal \(\mathbf {x}_0\) from its noisy observations \(\mathbf {y}=\mathbf {x}_0+\mathbf {z}\). In this paper, we focus on the “structured denoising problem,” where the signal \(\mathbf {x}_0\) possesses a certain structure and \(\mathbf {z}\) has independent normally distributed entries with mean zero and variance \(\sigma ^2\). We employ a structure-inducing convex function \(f(\cdot )\) and solve \(\min _\mathbf {x}\{\frac{1}{2}\Vert \mathbf {y}-\mathbf {x}\Vert _2^2+\sigma {\lambda }f(\mathbf {x})\}\) to estimate \(\mathbf {x}_0\), for some \(\lambda >0\). Common choices for \(f(\cdot )\) include the \(\ell _1\) norm for sparse vectors, the \(\ell _1-\ell _2\) norm for block-sparse signals and the nuclear norm for low-rank matrices. The metric we use to evaluate the performance of an estimate \(\mathbf {x}^*\) is the normalized mean-squared error \(\text {NMSE}(\sigma )=\frac{{\mathbb {E}}\Vert \mathbf {x}^*-\mathbf {x}_0\Vert _2^2}{\sigma ^2}\). We show that NMSE is maximized as \(\sigma \rightarrow 0\) and we find the exact worst-case NMSE, which has a simple geometric interpretation: the mean-squared distance of a standard normal vector to the \({\lambda }\)-scaled subdifferential \({\lambda }\partial f(\mathbf {x}_0)\). When \({\lambda }\) is optimally tuned to minimize the worst-case NMSE, our results can be related to the constrained denoising problem \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-\mathbf {x}\Vert _2\}\). The paper also connects these results to the generalized LASSO problem, in which one solves \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-{\mathbf {A}}\mathbf {x}\Vert _2\}\) to estimate \(\mathbf {x}_0\) from noisy linear observations \(\mathbf {y}={\mathbf {A}}\mathbf {x}_0+\mathbf {z}\). We show that certain properties of the LASSO problem are closely related to the denoising problem. In particular, we characterize the normalized LASSO cost and show that it exhibits a “phase transition” as a function of number of observations. We also provide an order-optimal bound for the LASSO error in terms of the mean-squared distance. Our results are significant in two ways. First, we find a simple formula for the performance of a general convex estimator. Secondly, we establish a connection between the denoising and linear inverse problems.  相似文献   

16.
Let \(\mathcal {R}\) be a prime ring, \(\mathcal {Z(R)}\) its center, \(\mathcal {C}\) its extended centroid, \(\mathcal {L}\) a Lie ideal of \(\mathcal {R}, \mathcal {F}\) a generalized skew derivation associated with a skew derivation d and automorphism \(\alpha \). Assume that there exist \(t\ge 1\) and \(m,n\ge 0\) fixed integers such that \( vu = u^m\mathcal {F}(uv)^tu^n\) for all \(u,v \in \mathcal {L}\). Then it is shown that either \(\mathcal {L}\) is central or \(\mathrm{char}(\mathcal {R})=2, \mathcal {R}\subseteq \mathcal {M}_2(\mathcal {C})\), the ring of \(2\times 2\) matrices over \(\mathcal {C}, \mathcal {L}\) is commutative and \(u^2\in \mathcal {Z(R)}\), for all \(u\in \mathcal {L}\). In particular, if \(\mathcal {L}=[\mathcal {R,R}]\), then \(\mathcal {R}\) is commutative.  相似文献   

17.
A recent series of papers has examined the extension of disjunctive-programming techniques to mixed-integer second-order-cone programming. For example, it has been shown—by several authors using different techniques—that the convex hull of the intersection of an ellipsoid, \(\mathcal {E}\), and a split disjunction, \((l - x_j)(x_j - u) \le 0\) with \(l < u\), equals the intersection of \(\mathcal {E}\) with an additional second-order-cone representable (SOCr) set. In this paper, we study more general intersections of the form \(\mathcal {K}\cap \mathcal {Q}\) and \(\mathcal {K}\cap \mathcal {Q}\cap H\), where \(\mathcal {K}\) is a SOCr cone, \(\mathcal {Q}\) is a nonconvex cone defined by a single homogeneous quadratic, and H is an affine hyperplane. Under several easy-to-verify conditions, we derive simple, computable convex relaxations \(\mathcal {K}\cap \mathcal {S}\) and \(\mathcal {K}\cap \mathcal {S}\cap H\), where \(\mathcal {S}\) is a SOCr cone. Under further conditions, we prove that these two sets capture precisely the corresponding conic/convex hulls. Our approach unifies and extends previous results, and we illustrate its applicability and generality with many examples.  相似文献   

18.
For each rank metric code \(\mathcal {C}\subseteq \mathbb {K}^{m\times n}\), we associate a translation structure, the kernel of which is shown to be invariant with respect to the equivalence on rank metric codes. When \(\mathcal {C}\) is \(\mathbb {K}\)-linear, we also propose and investigate other two invariants called its middle nucleus and right nucleus. When \(\mathbb {K}\) is a finite field \(\mathbb {F}_q\) and \(\mathcal {C}\) is a maximum rank distance code with minimum distance \(d<\min \{m,n\}\) or \(\gcd (m,n)=1\), the kernel of the associated translation structure is proved to be \(\mathbb {F}_q\). Furthermore, we also show that the middle nucleus of a linear maximum rank distance code over \(\mathbb {F}_q\) must be a finite field; its right nucleus also has to be a finite field under the condition \(\max \{d,m-d+2\} \geqslant \left\lfloor \frac{n}{2} \right\rfloor +1\). Let \(\mathcal {D}\) be the DHO-set associated with a bilinear dimensional dual hyperoval over \(\mathbb {F}_2\). The set \(\mathcal {D}\) gives rise to a linear rank metric code, and we show that its kernel and right nucleus are isomorphic to \(\mathbb {F}_2\). Also, its middle nucleus must be a finite field containing \(\mathbb {F}_q\). Moreover, we also consider the kernel and the nuclei of \(\mathcal {D}^k\) where k is a Knuth operation.  相似文献   

19.
Let \({\mathcal {LM}}\left( {\mathcal {A}}, P\right) \) be an \(\ell ^1\)-Munn algebra over an arbitrary unital Banach algebra \({\mathcal {A}}\). We characterize homomorphisms from \({\mathcal {LM}}\left( {\mathcal {A}}, P\right) \) into an arbitrary Banach algebra \({\mathcal {B}}\) in terms of homomorphisms from \({\mathcal {A}}\) into \({\mathcal {B}}\). Then we discuss homomorphisms from arbitrary Banach algebras into \({\mathcal {LM}}\left( {\mathcal {A}}, P\right) \). Existence and uniqueness of homomorphisms under certain conditions are also discussed. We apply these results to the concrete case of \(\ell ^1(S)\) where S is a Rees matrix semigroup, to identify characters of \(\ell ^1(S)\) in both cases where S is with or without zero. As a consequence if the sandwich matrix of S has a zero entry, then \(\ell ^1(S)\) is character amenable.  相似文献   

20.
We study packing problems with matroid structures, which includes the strength of a graph of Cunningham and scheduling problems. If \(\mathcal {M}\) is a matroid over a set of elements S with independent set \(\mathcal {I}\), and \(m=|S|\), we suppose that we are given an oracle function that takes an independent set \(A\in \mathcal {I}\) and an element \(e\in S\) and determines if \(A\cup \{e\}\) is independent in time I(m). Also, given that the elements of A are represented in an ordered way \(A=\{A_1,\dots ,A_k\}\), we denote the time to check if \(A\cup \{e\}\notin \mathcal {I}\) and if so, to find the minimum \(i\in \{0,\dots ,k\}\) such that \(\{A_1,\dots ,A_i\}\cup \{e\}\notin \mathcal {I}\) by \(I^*(m)\). Then, we describe a new FPTAS that computes for any \(\varepsilon >0\) and for any matroid \(\mathcal {M}\) of rank r over a set S of m elements, in memory space O(m), the packing \(\varLambda ({\mathcal {M}})\) within \(1+\varepsilon \) in time \(O(mI^*(m)\log (m)\log (m/r)/\varepsilon ^2)\), and the covering \(\varUpsilon ({\mathcal {M}})\) in time \(O(r\varUpsilon ({\mathcal {M}})I(m)\log (m)\log (m/r)/\varepsilon ^2)\). This method outperforms in time complexity by a factor of \(\varOmega (m/r)\) the FPTAS of Plotkin, Shmoys, and Tardos, and a factor of \(\varOmega (m)\) the FPTAS of Garg and Konemann. On top of the value of the packing and the covering, our algorithm exhibits a combinatorial object that proves the approximation. The applications of this result include graph partitioning, minimum cuts, VLSI computing, job scheduling and others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号