首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When the cations bound to purple membrane are removed it turns blue, and when this blue membrane is irradiated its color changes to pink. Irradiation of pink membrane leads to the reformation of blue membrane. We have determined that the quantum efficiency for the formation of pink membrane from deionized blue membrane is 1.6 ± 0.6 ± 10 4 at 0oC, pH 5.0. We also found that the quantum efficiency for the back photoconversion, i.e. the formation of blue membrane from pink membrane, is 8.8 ± 1.6 ± 10-3 at 0oC, 55 times greater than that of the forward photoconversion reaction. The extinction coefficients of the pink membrane and blue membrane were determined to be 44 500 ± 670 cm-1 M-1 at 491 nm and 54 760 ± 830 cm-1 M -1 at 603 nm, respectively, assuming light-adapted purple membrane is 63 000 cm-1 M -1 at 568 nm. The quantum efficiency for forming pink membrane from blue membrane is much lower than that for forming the photointermediate of the blue membrane's photocycle. Their relationship is similar to that of light-adaptation and photocycle of the dark-adapted purple membrane.  相似文献   

2.
Abstract— The photoreaction cycle of 13- cis -bacteriorhodopsin (13- cis -bR) was investigated by low temperature spectrophotometry using two different preparations; 13- cis -bR constituted from bacterioopsin and 13- cis -retinal, and dark-adapted bacteriorhodopsin (bRD), which is an equi-molar mixture of 13- cis -bR and trans -bR.
By irradiation with 500 nm light at — 190°C, 13- cis -bR was converted to its batho-product, batho-13- cis -bR (batho-bR13), which is different from batho-product from trans -bR, batho-bRt. On warming batho-bR13 to -5°C in the dark, it completely changed to trans -bR. We estimated the composition of 13- cis -bR and trans -bR in the warmed sample spectrophotometrically and then the absorption spectrum of batho-bR13 was calculated. The absorption maximum lies at 608 nm, 1250 cm−1 longer than that of 13- cis -bR; the molar extinction coefficient (ε) is about 74000 M −1 cm−1, larger than that of 13- cis -bR (52000 M −1 cm−1).
On the warming the sample containing batho-bR13 formed by irradiating 13- cis -bR or bRD at — 190°C, we could not detect other intermediates such as the lumi- or meta-intermediates seen in trans-bR system.  相似文献   

3.
Abstract— The photoreaction of the artificial pigment synthesized from bacterioopsin and rrans-3,4-dehydro-retinal, [3,4-dehydro]bacteriorhodopsin ([3,4-deH]bRt) was investigated with low temperature spectrophotometry.
The amount of batho-product formed from the light-adapted pigment of [3,4-deH]bR (designated as batho-[3,4-deH]bRt) by irradiation at 77 K was much less than that from trans -bacteriorhodopsin (bRt) and depends on temperature at irradiation of the sample. The kinetics of photoconversion of [3,4-deH]bRt to batho-[3,4-deH]bRt and that of its reversion were measured at several temperatures with a so-called "double Dewar system". The results showed that the photosensitivity of [3,4-deH]bRt was temperature dependent. When batho-[3,4-deH]bRt was warmed above 143 K, it was converted to lumi-[3,4-deH]bRt. Lumi-[3,4-deH]bRt was also produced by irradiation of [3,4-deH]bRt at 143 or 163 K. The maximum in the difference spectrum between lumi-[3,4-deH]bRt and [3,4-deH]bRt was located at about 540 nm. The irradiation of [3,4-deH]bRt at 183 K produced an intermediate analogous to meta-bRt, but under similar conditions bRt does not produce meta-bRt. These results indicate that intermediates of [3,4-deH]bRt are less stable than those of bRt.
The differences between bacteriorhodopsin and [3,4-dehydro]bacteriorhodopsin were discussed and compared with the differences between rhodopsin and [3,4-dehydro]rhodopsin.  相似文献   

4.
Abstract— The binding of neutral red to purple membrane has been studied. The intrinsic p K a and the apparent p K a, of bound neutral red were determined by titration and by measuring the binding ratio of neutral red to purple membrane as a function of pH. The surface potential of purple membrane was inferred from the difference between these two p K as. The H+/M412 ratio at different ionic strengths was also measured and compared with the surface potential. The results show that the H+/M412 decreased as the surface potential increased due to decreased salt concentrations. However, this correlation holds only for KCl concentrations higher than 30 m M . At lower salt concentrations, the change in surface potential is always less than the variation in the H+/M412 ratio.  相似文献   

5.
Abstract— Bleached purple membrane normally binds Ca2+ and Mg2+, which can be removed by the divalent cation chelator ethylenediaminetetraacetic acid (EDTA). Regeneration of pigments from EDTA-treated bleached membrane (apomembrane) and retinal leads to the formation of blue membrane at pH 4.8, and purple membrane at neutral pH. The pigments take much longer to regenerate than with un-deionized apoprotein. Adding back cations to the deionized apomembrane only partially speeds up the regeneration process. Like native purple membrane, the regenerated purple membrane also undergoes a photocycle and shows a light-induced proton release and uptake, although with much slower kinetics than the native species. Thus, cations control the kinetics of pigment regeneration, and also some aspects of the pigment's conformation which controls the photocycle kinetics. The removal and replacement of the cations is not completely reversible, suggesting the cations are not merely bound in the double layer.  相似文献   

6.
SALT AND pH-DEPENDENT CHANGES OF THE PURPLE MEMBRANE ABSORPTION SPECTRUM   总被引:19,自引:0,他引:19  
Abstract —Purple membrane suspensions change their color to blue and the absorption maximum shifts to 608 nm when the membrane is deionized on a cation exchange column or when it is washed first with < 2N NaCl followed by deionized water. The deionized chromophore is essentially identical with the chromophore produced by lowering the pH of the native membrane to < 4.0 (p K < 3.0). However, the deionized membrane does not aggregate and can be obtained in the pure state. The original purple color of the membrane is restored by addition of around 1 m M Na+, K+ or 10 μ M Mg2+, Ca2+, Sr2+, Mn2+, Pb2+ or La2+ when the protein concentration is 5μ M . The required salt concentrations decrease with decreasing pH. Direct measurement of bound Ca2+ by atomic absorption spectroscopy yields a ratio of Ca2+ to protein of <2 and a binding constant of 1.4 × 106. Titration of the spectral change with salts at different pH values shows a linear relation between the pH and the logarithm of the salt concentration, with a 1:1 ratio for Na+ and 1:2 ratio for Ca2+. These relations are well predicted by Gouy-Chapman theory; however, the accompanying release of protons, changes of the CD spectrum, the complex kinetics of the spectral change during reconstitution with salt and preliminary X-ray diffraction results all suggest that conformational changes may be occurring in the protein.  相似文献   

7.
Abstract— Thermally stimulated luminescence studies of UV- and X-irradiated caffeine have been conducted in the interval77–300 K. The X-ray-induced glow curve exhibits peaks at 102, 128, 158, and 198 K, whereas the UV-induced curve is characterized by peaks with maxima at 120 and 208 K. Analysis of the X-ray-induced glow peaks revealed that the 102 and 128 K peaks obeyed first-order kinetics, while the 158 and 198 K ones followed orders of 1.3 and 1.8, respectively. Trapping parameters associated with the peaks were also elucidated. Concomitant emission spectra of each glow peak (both UV and X-ray induced) were identical and consisted of a band with well-defined maxima at 405 and 480 nm which are attributed to singlet (S1→ S0+ h v ) and triplet (T1→ S0+ h v ) transitions, respectively. At elevated temperatures the triplet transition is not observed due to quenching of the triplet state or to triplet-triplet interactions. An energy-level diagram depicting the thermally stimulated processes in irradiated caffeine is presented.  相似文献   

8.
Abstract— We have obtained the resonance Raman spectra of the deionized form of the purple membrane, the so called blue membrane, as well as the purple membrane regenerated by titrating the blue membrane with either Na+, Ca2+ or La3+. All types of regenerated purple membrane have identical Raman spectra which are virtually indistinguishable from the native light-adapted bacteriorhodopsin spectrum. On the other hand, Raman data for the blue membrane suggest that it consists of essentially two pigment forms with absorption maxima around 605 and 570 nm and containing 13-cis and all-trans isomeric configurations of the chromophore. This is consistent with our chromophore extraction results which reveal that the blue membrane consists of 30% 13-cir and 70% all-trans chromophore.  相似文献   

9.
THE FORMATION OF TWO FORMS OF BATHORHODOPSIN AND THEIR OPTICAL PROPERTIES   总被引:3,自引:0,他引:3  
Abstract— Using two kinds of rhodopsin preparations (digitonin extract and rod outer segments suspension), we measured changes in absorption spectra during the conversion of rhodopsin or isorhodopsin to a photosteady state mixture composed of rhodopsin, isorhodopsin and bathorhodopsin by irradiation with blue light (437 nm) at 77 K and during the reversion of bathorhodopsin to a mixture of rhodopsin and isorhodopsin by irradiation with red light (> 650 nm) at 77 K. The reaction kinetics could be expressed with only one exponential in the former case and with two exponentials in the latter case. These data suggest that both rhodopsin and isorhodopsin are composed of a single molecular species, while bathorhodopsin is composed of two molecular species, designated as bathorhodopsin1 and bathorhodopsin2. The absorption spectra of these bathorhodopsin were calculated by two different methods (kinetic method and warming-cooling method). The former was based on the kinetics of the conversion of two forms of bathorhodopsin by irradiation with the red light. The spectra obtained by this method were consistent with those obtained by the warming-cooling method. Bathorhodopsin1 and bathorhodopsin2 have Λmax at 555 and 538 nm, respectively. The two forms of bathorhodopsin are interconvertible in the light, but not in the dark. Thus, we suggest that a rhodopsin molecule in the excited state relaxes to either bathorhodopsin1 or bathorhodopsin2 through one of the two parallel pathways.  相似文献   

10.
Abstract— In the non-photoreaclivable bacterial strain E. coli B/phr-/MC2 the photoreversion of four groups of u.v.-induced mutations were investigated. They lead to resistance to Chloramphenicol (2 mg/l; "C"), Penicillin (13 or 16 mg/l; "P13" and "P16") or Streptomycin (3 mg/l; "S"). The u.v.-dose curve is concave for the C-mutations (two to three hits), about linear for P13 and S, and they reach peaks and decrease at high u.v.-doses. Though no photoreactivation of killing (PR) is present there is photoreversion of all four types of mutations (PRM). At u.v.-doses below the peaks in average about 43 per cent mutations are photoreversible. At high u.v.-doses the curves with light-post treatment (L) cross the darkcurves (D). In the photoreactivable strain B/r (by the spontaneous mutation MC2 to Mitomycin-resistance strain B/phr- was made about as u.v.-resistant as B/r is) the photoreversion of the mutation groups C, P13 and P16 (S was not investigated here) was much higher, in average about 77 per cent at low doses. It is assumed that the difference in PRM of about 34 per cent between both strains is due to a PRM-mechanism present in B/r but not in B/phr-/MC2; this mechanism may be the photoreactivating enzyme that opens thymine-dimers. The PRM in B/phr-/MC2 must then be due to a second mechanism which is probably not the dimer opening enzyme. It may be the same mechanism as in the case of mutations of phage kappa which are induced by u.v. and reversed partially by light, both extra cellularly. The premutations giving this second type of PRM may perhaps be cytosine-hydrate in the DNA. Tn average about 23 per cent mutations of B/r are photostable. Since this ratio decreases with low u.v.-doses in the C-mutations and increases in P13 and in P16 probably two types of photostable premutations seem to exist.  相似文献   

11.
Abstract— The effect of light on purple membrane biogenesis in Halobacterium halobium S9 strain was investigated. When bacteria were grown in the dark, the 570nm absorption due to bacteriorhodopsin increased more slowly than under illumination, but eventually after longer incubation, reached the same level as that seen in the illuminated culture.
Analysis of membrane fractions by sucrose density gradient centrifugation revealed that two different membrane fractions, containing purple and brown membrane could be detected in the exponential growth phase. Another fraction whose density was higher than that of purple membrane, disappeared concomitantly with the increase in purple membrane and brown membrane, indicating that it may be related to purple membrane formation.
HPLC analysis of membrane proteins showed that there was no significant difference in de novo synthesis of bacterio–opsin between dark and illuminated cultures. This led us to conclude that light stimulated retinal binding to bacterio–opsin and/or retinal biosynthesis rather than bacterio–opsin synthesis. Bacteriorhodopsin seemed to form the brown membrane fraction first, which then spontaneously reorganized into purple membrane.
When incorporated in liposomes, bacteriorhodopsin in brown membrane was found to have rather higher proton pump activity than that in purple membrane. The H+ pumping activity was quite heat labile. This and the CD spectra indicated that bacteriorhodopsin in brown membrane might exist without forming normal timer unit.  相似文献   

12.
Photosensitivity (Kλ) of a visual pigment is the product of the molecular absorption coefficient (αλ) and the quantum efficiency for photoconversion (γ). Among the invertebrates, many visual pigments are stable not only in the rhodopsin (R) conformation but also as the photoproduct, metarhodopsin (M), We here employ a method for determining the photosensitivities of the two stable pigments of a rhodopsin-metarhodopsin pair, using kinetic analysis of fluorescence from metarhodopsin combined with measurements of spectral absorption made before and after saturation at the isosbestic wavelength of the pigment pair. A curve fitting technique, in which a theoretical function is scaled for best fit to the measured absorption spectrum of the photosteady-state mixture, yields values for the photosensitivity of rhodopsin at λ.max, the ratio of quantum efficiencies for rhodopsin—metarhodopsin interconversion, and the fractional composition of the steady-state mixture. With knowledge of the molecular extinction coefficient, the absolute values of quantum efficiency can be calculated. For crayfish ( Orconectes, Procambarus ) rhodopsin, measured in isolated rhabdoms, Kmax= 1.05 x 10-16 cm2 at 535 nm with >7λR→M0.69. These values are similar to the photosensitivity and quantum efficiency of bleaching of vertebrate rhodopsins in digitonin solution (Dartnall, 1972). For the metarhodopsin, Kmax= 1.02 x 10-16 cm2 at 510 nm, and λM-R= 0.49.  相似文献   

13.
Abstract. The fluorescence yield, φ, as a function of single picosecond laser pulse intensity was experimentally studied in spinach chloroplasts and for chlorophyll a in ethyl ether solution. The progressive decrease in φ with increasing incident intensity for in vivo chlorophyll was found to be adequately explained within the context of continuum bimolecular kinetics with a singlet-singlet fusion rate constant of γ=5×-9cm-3s-1 at room temperature. We discuss qualitatively how the fluorescence quantum yield depends on the duration and intensity of the incident pulse. The identity of φ vs l (the number of absorbed quanta) curves at the emission maxima of 685 nm and 735 nm for single picosecond pulse mode of excitation is explained within the context of Butler's tripartite model of the fluorescence of chloroplasts at 77 K. Various models relating γ to the singlet exciton diffusion coefficient and the Förster energy transfer rate are used to infer lower bounds to these physical parameters. Predictions and supporting experimental evidence for the tripartite model are discussed.  相似文献   

14.
Abstract
The shape of the fluence-response relationship for the phototropic response of the JK224 strain of Arabidopsis thaliana depends on the fluence rate and wavelength of the actinic light. At low fluence rate (0.1 μmol m-2s-1), the response to 450-nm light is characterized by a single maximum at about 9 μmol m-2. At higher fluence rate (0.4 μmol m-2s-1), the response shows two maxima, at 4.5 and 9 μmol m-2. The response to 510-nm light shows a single maximum at 4.5 μmol m-2. Unilateral preirradiation with high fluence rate (25 μmol m-2s-1) 510-nm light eliminates the maximum at 4.5 μmol m-2 in the fluence response curve to a subsequent unilateral 450-nm irradiation, while the second maximum at 9 μmol m-2 is unaffected. Based on these results, it is concluded that a single photoreceptor pigment has been altered in the JK224 strain of Arabidopsis thaliana.  相似文献   

15.
Abstract— All- trans , 11- cis and 9- cis isomers of the C17 aldehyde analogs of retinal bound with purple membrane apoprotein, probably through a Schiff base linkage at the normal retinal binding site. The complex formed from C17 aldehyde and purple membrane apoprotein was slowly decomposed by 10m M hydroxylamine. The C17 aldehyde competitively inhibited the regeneration of purple membrane from all- trans -retinal and purple membrane apoprotein. The differential ability of the different isomers to inhibit the regeneration suggests that purple membrane has a binding site for the side chain of retinal in addition to the Schiff base binding site.  相似文献   

16.
The electron spin polarization (ESP) pattern of the donor-triplet state (PR) of reaction centers (RC's) of the purple bacterium Rhodobacter (formerly Rhodopseudomonas) sphaeroides R-26 was investigated. δm =±1 triplet EPR spectra were recorded of unmodified RC's as well as of RC's from which Fe2+ or ubiquinone was removed, or ubiquinone was substituted by menaquinone.
The relative amplitude of the Y peaks in the triplet EPR powder spectrum of PR decreases when the temperature is increased from 8 K to 100 K in RC's with an intact quinone-iron complex. This decrease is more pronounced when the primary ubiquinone is substituted by menaquinone. These observations provide further support for the hypothesis that the observed lineshape of the PR triplet state EPR spectrum reflects the presence of a third electron spin, magnetically coupled to I- in the P+I- radical pair, as suggested by Van Wijk et al. (1986) (Photobiochem. Photobiophys . 11, 95–100). Our observations suggest that this phenomenon may be general in purple bacteria.  相似文献   

17.
Abstract— Porous Vycor glass samples containing adsorbed molecules were illuminated at 77 K by a mercury lamp jacketed by a filter cutting off wavelengths below 250 nm. Oxygen or carbon dioxide on Vycor produces an asymmetric electron paramagnetic resonance (EPR) signal best described as holes trapped in the glass. Methyl bromide produces an identical EPR signal plus four other lines due to methyl radicals. Evidence is presented that the products result from excitonic energy transfer from the Vycor to the adsorbed materials. Triphenylamine (TPA) adsorbed on Vycor can also be photoionized by similar illumination, and the cation radical TPA+ can be stabilized at 77 K if an electron acceptor is also adsorbed. Attachment of the photoejected electron by carbon dioxide forms CO2-, and that by methyl bromide leads to methyl radicals. The CH3 radical yield is dependent on the surface separation between the electron donor (TPA) and the acceptor (CH3Br). By monitoring the relative quantum yield of the methyl radicals as a function of distance separating the TPA and CH3Br, it is shown that the photoelectron is capable of migrating on the Vycor glass surface.  相似文献   

18.
Abstract— From light-induced changes in linear dichroism, we have calculated the rotation of the long-wavelength-absorbing transition moment that occurs during phototransformation of 124-kilodalton Avena sativa phytochrome. Phytochrome was purified to homogeneity and immobilized onto Sepharose beads covalently coated with antibodies against A. sativa phytochrome. Changes in linear dichroism were induced by plane-polarized red or far-red light and measured by the absorbance differences at 660 and 730 nm using a dual-wavelength spectrophotometer equipped with polarizing filters in the measuring beams. From such measurements, we calculate a rotation angle of 31o (or 149o) during photoconversion of Pr to Pfr and 30o (or 150o) during photoconversion of Pfr to Pr. These values are similar to the value of 32o (or 148o) reported earlier for the rotation of the transition moment of "large" A. sativa phytochrome (∽ 120 kilodalton) isolated under conditions that did not preclude post homogenization proteolysis of the 124 kilodalton molecule.  相似文献   

19.
Abstract. Using single picosecond laser pulses at 610 nm, the fluorescence yield (φ) of spinach chloroplasts as a function of intensity ( I ) (1012-1016 photons/pulse/cm2) was studied in the range of 21–300 K. The quantum yield decreases with increasing intensity and the φ vs I curves are identical at the emission maxima of 685 and 735 nm. This result is interpreted in terms of singlet exciton-exciton annihilation on the level of the light-harvesting pigments which occurs before energy is transferred to the Photosystem I pigments which emit at 735 nm.
The yield φ is decreased by factors of 12 and 43 at 300 and 21 K, respectively. The shapes of the φ vs I curves are not well accounted for in terms of a model which is based on a Poisson distribution of photon hits in separate photosynthetic units, but can be satisfactorily described using a one-parameter fit and an exciton-exciton annihilation model. The bimolecular annihilation rate constant is found to be γ= (5–15) times 10-9cm3s-1 and to exhibit only a minor temperature dependence. Lower bound values of the singlet exciton diffusion coefficient (≥ 10-3cm2s-1), diffusion length (≥ 2 times 10-6cm) and Förster energy transfer rates (≥ 3 ≥ 1010s-1) are estimated from γ using the appropriate theoretical relationships.  相似文献   

20.
Abstract —The ultraviolet irradiation (290 nm ≤Λ≤ 390 nm) of indole, purine, indazole, acridine and quinoline in 2-methyltetrahydrofuran glass at 77 K produces trapped radicals. Two electron-paramagnetic-resonance (EPR) signals are found at 77 K during illumination, one at high magnetic field (3–25 times 10-1 T) assigned to the matrix radical and the other at low field (1.3 times 10-1 to 1–5 times 10-1 T) attributed to the lowest triplet state of the heterocyclic molecule. Quantum yields for triplet production at 77 K are 0–34 for indole, 0.51 for purine, 0.55 for indazole, 0.15 for acridine, and 0.94 for quinoline. The rate of formation of matrix radicals varies as the n Rth power of the incident light intensity, I 0nR, where 1.6 ≤ n R=≤ 2. Solvent radical yields, which depend on the light intensity, have been determined. Under the experimental conditions, no signals attributable to trapped electrons or cations have been observed. The dependence of the reciprocal value of the rise lifetime of the low field EPR signal as a function of the intensity of exposure is in accordance with a biphotonic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号