首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
2.
Crystal Structures of (Ph4P)2[HfCl6]·2CH2Cl2 and (Ph4P)2[Hf2Cl10]·CH2Cl2 Colourless single crystals of (Ph4P)2[HfCl6]·2CH2Cl2 ( 1 ) and (Ph4P)2[Hf2Cl10]·CH2Cl2 ( 2 ) were obtained from hafniumtetrachloride and tetraphenylphosphonium chloride in dichloromethane solution, using the corresponding stoichiometry of the educts. Both compounds were characterized by X‐ray structure determinations. 1 : Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1018.3(1), b = 1121.0(1), c = 1240.1(1) pm, α = 70.55(1)°, β = 81.38(1)°, γ = 80.02(1)°, R1 = 0.0374. 2 : Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1124.4(1), b = 1141.9(1), c = 1281.4(1) pm, α = 63.80(1)°, β = 68.15(1)°, γ = 86.33(1)°, R1 = 0.0208.  相似文献   

3.
The Zintl phase K4SnTe4 reacts with tetraphenylphosphonium bromide in methanol to give the polytelluride (Ph4P)2Te4 · 2 CH3OH. The compound crystallizes in the monoclinic space group C2/c with lattice constants a = 2329.6(11) pm, b = 1472.0(6) pm, and c = 1461.9(6) pm with ß = 111.34(3)°. Significant structural units are tetratelluride(2?) anions with CH3OH molecules hydrogen bonded to both ends of the anion.  相似文献   

4.
The reaction of Ph3SnCl, (R4N)2[Mo6O19] and (R4N)OH in a molar ratio of 6:1:10 leads to the formation of (R4N)[(Ph3Sn)MoO4] (R = nPr ( 1 ), nBu ( 2 )). Compounds 1· CH3CN and 2 have been charactarized by IR spectroscopy and single crystal X‐ray diffraction. 1· CH3CN forms orthorhombic crystals, space group P212121 with a = 1339.9(2), b = 1508.9(2), c = 1733.2(3) pm. 2 crystallizes in the monoclinic space group P21 with a = 1342.6(2), b = 2280.3(4), c = 1344.0(2) pm, β = 118.34(1). Both compounds 1 and 2 consist of isolated R4N+ cations and polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains with an alternating arrangement of Ph3Sn+ and MoO42– groups. Treatment of (Ph3Sn)2MoO4 with bis(ethylenediamine)copper(II) succinate yields [Cu(en)2(Ph3Sn)2(MoO4)2] ( 3 ). The zinc derivative [Zn(en)2(Ph3Sn)2(MoO4)2] ( 4 ) is obtained similarly by reaction of (Ph3Sn)2MoO4 with bis(ethylenediamine)zinc(II) formiate. Compounds 3· 2DMF · EtOH and 4· 2DMF · EtOH crystallize in the monoclinic space group P21/n with a = 1998.0(2), b = 1313.3(1), c = 2181.6(2) pm, β = 90.97(1)° for 3 and a = 2015.4(1), b = 1316.7(1), c = 2157.0(1) pm, β = 90.40(1)° for 4 . Like in the cases of 1 and 2, polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains are observed. The [M(en)2]2+ units (M = Cu, Zn) act as linkers between the $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains to give 2D layer structures with (6, 3) net topology.  相似文献   

5.
Crystal Growth and Structure of CoSO4 · Pyrazine · 6 H2O (I) and (CoSO4)2 · Pyrazine · 12 H2O (II) Single crystals of μ-pyrazino-bis[pentaquacobalt(II)]-sulfate-dihydrate CoSO4(pz) · 6 H2O and Tetraqua-μ-pyrazino-cobalt(II)sulfate-dihydrate (CoSO4)2(pz) · 12 H2O were grown by using gel methods and investigated by X-ray analysis. CoSO4(pz) · 6 H2O (I) shows monoclinic symmetry, space group C2/c; a = 1006.4(4) pm, b = 1026.9(4) pm, c = 1261.5(2) pm; β = 104.01(4)°; Z = 4. (CoSO4)2(pz) · 12 H2O (II) shows orthorhombic symmetry, space group Pbam; a = 1262.3(4) pm, b = 1231.3(4) pm, c = 684.1(2) pm; Z = 2. CoSO4 and Pyrazine crystallize in a polymeric (I) as well as in a dimeric (II) compound. In the polymeric compound the molecules are bonded by pyrazine to form alternating linear chains. The dimer is a dinuclear complex with a bridging pyrazine molecule.  相似文献   

6.
Synthesis and Crystal Structure of [WNCl3 · NCPh]4 · 3 CH2Cl2 The adduct of tungsten nitride trichloride with benzonitrile, [WNCl3 · NCPh]4, is formed by the reaction of N,N,N'-tris(trimethylsilyl)benzamidine and tungsten hexachloride in CCl4 solution. It forms red crystal needles and was characterized by its IR spectrum and an X-ray crystal structure determination (1983 unique observed reflexions, R = 0.075). Crystal data: a = 1464.8, b = 1902.6, c = 2033.8 pm, β = 102.27°, space group C2/c, Z = 4. In the [WNCl3 · NCPh]4 molecule the tungsten atoms were located at the vertices of a square and are linked with one another via linear W?N? W nitrido bridges with alternating short and long bonds having average lengths of 166 and 211 pm. The N atoms of the benzonitrile ligands are in the positions trans to the W?N bonds at distances of 237 pm.  相似文献   

7.
[(Ph3Sn)3VO4]·CH3CN and [(Ph3Sn)3VO4]·2 DMF, Triphenyltin Vanadates with Novel Chain Structures The reaction of Na3VO4 with Ph3SnCl in a water/CH2Cl2 mixture leads to the formation of [(Ph3Sn)3VO4] ( 1 ). Recrystallization of 1 from toluene/CH3CN gives pale yellow crystals of [(Ph3Sn)3VO4]·CH3CN ( 2 ). 2 crystallizes as coordination polymer which consists of infinite chains composed of corner‐sharing VO4 tetrahedra and Ph3SnO2 trigonal bipyramides. Additionally the VO4 groups are connected to two terminal SnPh3‐Groups containing tin atoms in a tetrahedral environment. [(Ph3Sn)3VO4]·2 DMF ( 3 ) which is obtained from Na3VO4 and Ph3SnCl in a water/DMF mixture contains a polymeric chain structure similar to 2 and additionally one of the terminal SnPh3 groups is coordinated to a DMF solvent molecule.  相似文献   

8.
Crystal Structures of [Ph3PMe]Cl·CH2Cl2, [Ph4P]NO3·CH2Cl2, and [Ph4P]2[SiF6]·CH2Cl2 The crystal structures of the title compounds are determined by X‐ray diffraction. In all cases, the included dichloromethane molecules as well as the phosphonium cations are involved to form hydrogen bridges with the anions. [Ph3PMe]Cl·CH2Cl2 ( 1 ): Space group , Z = 2, lattice dimensions at 100 K: a = 890.3(1), b = 988.0(1), c = 1162.5(1) pm, α = 106.57(1)°, β = 91.79(1)°, γ = 92.60(1)°, R1 = 0.0253. [Ph4P]NO3·CH2Cl2 ( 2 ): Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1057.0(1), b = 1666.0(1), c = 1358.9(1) pm, β = 100.10(1)°, R1 = 0.0359. [Ph4P]2[SiF6]·CH2Cl2 ( 3 ): Space group , Z = 2, lattice dimensions at 193 K: a = 1063.9(1), b = 1233.1(1), c = 1782.5(2) pm, α = 76.88(1)°, β = 83.46(1)°, γ = 72.29(1)°, R1 = 0.0332.  相似文献   

9.
The nitrate anion coordinates to the Sn? CH2? Sn unit of the title phosphonium stannate, [Ph4P]+ [(Ph2ClSn)2CH2 ·NO3]?, to give a six‐membered ring having the penta‐coordinated tin atoms in a trigonal bipyramidal geometry. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
11.
12.
Novel tetrameric rhenium(V) complexes have been prepared from [ReNCl2(PPh3)2] and [ReN(PMe2Ph)(S2CNEt)2], respectively. [ReNCl2(PPh3)2] reacts with 1.5 equivalents of KS2CNEt2 in methanol to yield the unusual dark red species [{cyclo-ReN}4(S2CNEt2)6(MeOH)2(PPh3)2][BPh4]2 · CH2Cl2 · 2 H2O ( 1 ). The crystal structure of the tetramer (triclinic, space group P1, a = 13.842(2), b = 15.213(2), c = 16.796(3) Å, α = 67.88(1), β = 70.90(1), γ = 88.05(1)°, U = 3080.2(8) Å3, Z = 1) shows four rhenium atoms in a square configuration which are bridged via linear asymmetric Re≡N–Re groups with bond lengths of about 169 and 203 pm. The molecule contains a centre of symmetry with two distinct octahedral rhenium environments. The first rhenium environment contains two bidentate dithiocarbamate ligands which complete the octahedral geometry and the second contains a bidentate dithiocarbamate ligand, coordinated methanol and has retained a single phosphine coligand. A symmetric compound containing the {cyclo-ReN}4 core is obtained from the reaction of [ReN(PMe2Ph)(S2CNEt2)2] with Al2Cl6 in acetone. [{cyclo-ReN}4(S2CNEt2)4Cl4(PMe2Ph)4] · 2 acetone ( 2 ) forms red crystals (monoclinic, space group C2/c, a = 21.432(6), b = 13.700(3), c = 28.060(9) Å, β = 102.37(1)°, U = 8048(4) Å3, Z = 4) with each rhenium atom coordinated by a bidentate dithiocarbamato, a phosphine and a chloro ligand. The non-planar 8-membered {ReN}4 ring contains asymmetric Re≡N–Re bridges (mean values: 1.69 Å and 2.029 Å, respectively). In contrast, reaction of [ReNCl(S2CNEt2)(PMe2Ph)2] with one equivalent of K[S2CN(Me)CH2CH2NMe3]I gave the mixed dithiocarbamato-cation [ReN(S2CNEt2)(S2CN(Me)CH2CH2NMe3)(PMe2Ph)]+ ( 3 ) which was isolated as a tetraphenylborate salt.  相似文献   

13.
In the title compound, disodium cobalt tetrakis­(dihydrogen­phosphate) tetrahydrate, the CoII ion lies on an inversion centre and is octahedrally surrounded by two water molecules and four H2PO4 groups to give a cobalt complex anion of the form [Co(H2PO4)4(OH2)]2?. The three‐dimensional framework results from hydrogen bonding between the anions. The relationship with the structures of Co(H2PO4)2·2H2O and K2CoP4O12·5H2O is discussed.  相似文献   

14.
15.
Rubidium chromium(III) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­chromium(III)­rubidium(I)], [RbCr(C2O4)2(H2O)2], (I), and dicaesium magnesium dioxalate tetrahydrate [tetra­aqua­bis(μ‐oxalato)­magnesium(II)­dicaesium(I)], [Cs2Mg(C2­O4)2(H2O)4], (II), have layered structures which are new among double‐metal oxalates. In (I), the Rb and Cr atoms lie on sites with imposed 2/m symmetry and the unique water molecule lies on a mirror plane; in (II), the Mg atom lies on a twofold axis. The two non‐equivalent Cr and Mg atoms both show octahedral coordination, with a mean Cr—O distance of 1.966 Å and a mean Mg—O distance of 2.066 Å. Dirubid­ium copper(II) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­copper(II)­dirubidium(I)], [Rb2Cu(C2O4)2(H2O)2], (III), is also layered and is isotypic with the previously described K2‐ and (NH4)2CuII(C2O4)2·2H2O compounds. The two non‐equivalent Cu atoms lie on inversion centres and are both (4+2)‐coordinated. Hydro­gen bonds are medium‐strong to weak in the three compounds. The oxalate groups are slightly non‐planar only in the Cs–Mg compound, (II), and are more distinctly non‐planar in the K–Cu compound, (III).  相似文献   

16.
The title compound, diiron(III) trisulfate–sulfuric acid–water (1/1/28), has been prepared at temperatures between 235 and 239 K from acid solutions of Fe2(SO4)3. Studies of the compound at 100 and 200 K are reported. The analysis reveals the structural features of an alum, (H5O2)Fe(SO4)2·12H2O. The Fe(H2O)6 unit is located on a centre of inversion at (, 0, ), while the H5O2+ cation is located about an inversion centre at (, , ). The compound thus represents the first oxonium alum, although the unit cell is orthorhombic.  相似文献   

17.
Chloroberyllates with Nitrogen Donor Ligands. Crystal Structures of (Ph4P)[BeCl3(py)], (Ph4P)2[(BeCl3)2(tmeda)], (Ph4P)[BeCl2{(Me3SiN)2CPh}], and (Ph4P)2[BeCl4] · 2CH2Cl2 The title compounds were obtained as colourless, moisture sensitive crystals by reactions of (Ph4P)2[Be2Cl6] with pyridine, tmeda (N, N′‐tetramethylethylendiamine), or with the silylated benzamidine PhC—[N(SiMe3)2(NSiMe3)], whereas the tetrachloro beryllate was isolated as a by‐product from a solution in dichloromethane in the presence of the silylated phosphaneimine Me3SiNP(tol)3. All compounds were characterized by crystal structure determinations and by IR spectroscopy. (Ph4P)[BeCl3(Py)] ( 1 ): Space group Pbcm, Z = 4, lattice dimensions at 193 K: a = 756.2(1), b = 1739.2(2), c = 2016.3(2) pm, R1 = 0.0626. The complex anion contains tetrahedrally coordinated beryllium atom with a Be—N distance of 176.5 pm. (Ph4P)2[(BeCl3)2(tmeda)]·2CH2Cl2 ( 2 ·2CH2Cl2). Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1072.7(1), b = 1132.6(1), c = 1248.9(1) pm, α = 95.34(1)°, β = 92.80(1)°, γ = 90.81(1)°, R1 = 0.0344. Both nitrogen atoms of the tmeda molecule coordinate with BeCl3 units forming the centrosymmetric complex anion with Be—N distances of 181.3 pm. (PPh4)[BeCl2{(Me3SiN)2CPh}] ( 3 ). Space group C2, Z = 2, lattice dimensions at 193 K: a = 1255.4(2), b = 1401.9(2), c = 1085.2(2) pm, R1 = 0.0288. In the complex anion the benzamidinato ligand {(Me3SiN)2CPh} acts as chelate with Be—N distances of 174.9 pm. (Ph4P)2[BeCl4]·2CH2Cl2 ( 4 ·2CH2Cl2). Space group P2/c, Z = 4, lattice dimensions at 193 K: a = 2295.4(1), b = 982.5(1), c = 2197.2(2) pm, β = 99.19(1)°, R1 = 0.0586. 4 ·2CH2Cl2 contains nearly ideal tetrahedral [BeCl4]2— ions, like the previously described 4 ·2, 5CH2Cl2, which crystallizes in the space group P1¯, with Be—Cl distances of 203.4 pm on average.  相似文献   

18.
Crystal Structure of Sr(BrO3)2 · H2O, Ba(BrO3)2 · H2O, Ba(IO3)2 · H2O, Pb(ClO3)2 · H2O, and Pb(BrO3)2 · H2O The crystall structures of the isostructural halates Sr(BrO3)2 · H2O, Ba(BrO3)2 · H2O, Ba(IO3)2 · H2O, Pb(ClO3)2 · H2O, and Pb(BrO3)2 · H2O were determined using X-ray single crystal data (monoclinic space group C2/c? C, Z = 4), The mean bond lengths and bond angles of the halate ions in the Ba(ClO3)2 · 1 H2O-type compounds, which correspond to those of other halates, are Cl? O, 149.0, Br? O, 165.9, I? O, 180.2 pm, ClO3?, 106.4, BrO3?, 104.0, and IO3?, 99.6°. The structure data obtained are discussed in terms of possible orientational disorder of the water molecules, strengths of the hydrogen bonds, influence of the lead ions on the structure, and site group distortion of the halate ions.  相似文献   

19.
20.
Reaction of Mo(CO)(η2‐C2Ph2)24‐C4Ph4) and Me3NO in acetonitrile solvent affords Mo(NCMe)(η2‐C2Ph2)24‐C4Ph4) 1 . Compound 1 reacts with trimethylphosphine to produce Mo(PMe3)(η2‐C2Ph2)24‐C4Ph4) 2 , or reacts with diphenylacetylene to produce (η5‐C5Ph5)2Mo 3 and Mo(η2‐O2CPh)(η4‐C4Ph4H)(η4‐C4Ph4) 4 . The molecular structures of 1, 2 and 4 have been determined by an X‐ray diffraction study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号