首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coupled liquid chromatography – gas chromatography – mass spectrometry (LC-GC-MS) has been applied for on-line clean up, separation, and identification of chlorinated polycyclic aromatic hydrocarbons (CI-PAHs). A loop-type interface was used to couple the liquid chromatograph on-line with the GC-MS, and concurrent solvent evaporation was used for sample transfer. A back-flush technique was used in conjunction with a two-dimensional column system for isolation of CI-PAHs and polycyclic aromatic hydrocarbons (PAHs). This fraction was transferred on-line to the GC and separated on a capillary column. Selective and sensitive detection of CI-PAHs in the GC eluate was obtained by negative ion chemical ionization (NICI) mass spectrometry and selected ion monitoring (SIM). The combined on-line system for isolation, separation, and identification showed high precision and accuracy, and demonstrated a linear response from 1 to 1000 pg for chlorinated PAHs. The estimated detection limit was 250 fg for 1-chloropyrene and 1,6-dichloropyrene. The technique was demonstrated by analysis of urban air samples. The low detection limit made it possible to use the technique for analysis of personally carried monitoring equipment for measurement of exposure to CI-PAHs in the work environment.  相似文献   

2.
The feasibility of using ethyl acetate for the desorption of trace pollutants from a liquid chromatographic precolumn on-line into a diphenyltetramethyldisilazane-deactivated retention gap and, subsequently analysis by means of capillary gas chromatography has been demonstrated. First 5% of methanol are added to the water sample to prevent sorption of analytes onto parts of the preconcentration system. About 1 ml of this aqueous sample is injected onto a precolumn containing a polymeric stationary phase, using water–methanol (95:5, v/v) for transport and clean-up. The precolumn is desorbed with ethyl acetate and a fraction of 75 μl is injected on-line into the retention gap; separation is then achieved on a capillary CP Sil 19 column. No breakthrough of the test compounds was observed in the preconcentration step. The recovery was quantitative and the response obtained with flame ionization detection was linear in the range 0.1–100 ng/ml. The effect of varying the sorption flow rate on the recovery was studied. The system was applied to the analysis of river water.  相似文献   

3.
A fully automated on-line HPLC-HRGC instrument is described. Samples are loaded into an HPLC autosampler. Pre-separation is carried out, automatically transferring the previously determined HPLC fraction to GC. Total HPLC fractions are introduced into GC, using the on-column or the loop-type interface, depending on the solvent evaporation technique applied. The HPLC column is automatically backflushed with a suitable solvent during GC analysis. The instrument was used for analyzing heroin metabolites, particularly morphine, in urine samples. Raw urine extracts were injected into HPLC and analyzed by GC using FID.  相似文献   

4.
Liquid chromatographic (LC) type trace enrichment is coupled online with capillary gas chromatography (GC) with mass spectrometric (MS) detection for the analysis of aqueous samples. A volume of 1–10 ml of an aqueous sample is preconcentrated on a trace-enrichment column packed with a polymeric stationary phase. After cleanup with HPLC-grade water the precolumn is dried with nitrogen and subsequently desorbed with ethyl acetate. A fraction of 60 μl is introduced on-line into a diphenyltetramethyldisilazane-deactivated retention gap under partially concurrent solvent evaporation conditions and using an early solvent vapor exit. The analytes are separated and detected by means of GC–MS. The potential of the LC–GC–MS system for monitoring organic pollutants in river and drinking water is studied. Target analysis is carried out with atrazine and simazine as model compounds; the detection limits achieved under full-scan and multiple ion detection conditions are 30 pg and 5 pg, respectively. Identification of unknown compounds (non-target analysis), is demonstrated using a river water sample spiked with 168 pollutants varying in polarity and volatility.  相似文献   

5.
A fully automated on-line sample cleanup system based on the coupling of size exclusion chromatography to high resolution gas chromatography is described. The transfer technique employed is based on fully concurrent solvent evaporation using a loop-type interface, early vapor exit and co-solvent trapping. Optimization of the LC-GC transfer was done visually via an all-glass oven door. To circumvent the problem of mixing within the injection loop, an adaptation was made to the standard loop-type interface. The determination of a series of additives in a polymer matrix is presented as one example of the vast range of applications opened up by this technique.  相似文献   

6.
Abstract

A strongly basic anion-exchange resin is used for the trace enrichment and automated sample handling of phenol, with subsequent determination by reversed-phase liquid chromatography with fluorescence detection. Because of the presence of high concentrations of ionic compounds in the water samples tested, phenol is first trapped on a relatively long precolumn filled with a highly hydrophobic packing material; during this step, (in) organic anions which are not retained, are flushed to waste. In the next step, phenol is desorbed from this column at high pH and sorbed in a small zone (“peak compression”) on a short precolumn containing the anion exchanger.

In the analysis of tap and river water samples, the detection limit was found to be 10ppt (1:1011).  相似文献   

7.
A fully automated method for the simultaneous determination of verapamil and its main metabolite norverapamil in human plasma is described. This method is based on on-line sample preparation using dialysis followed by clean-up and enrichment of the dialysate on a precolumn and subsequent HPLC analysis with fluorometric detection. All sample handling operations were performed automatically by a sample processor equipped with a robotic arm (ASTED system). The plasma samples were dialysed on a cellulose acetate membrane (cut-off: 15 kD) and the dialysate was purified and enriched on a short pre-column filled with cyanopropyl silica. Before starting dialysis, this trace enrichment column (TEC) was first conditioned with the HPLC mobile phase and then with pH 3.0 acetate buffer. 370 μl of plasma sample spiked with the internal standard (gallopamil) were dialysed in the static-pulsed mode. The solution at the donor side was pH 3.0 acetate buffer containing Triton X-100 while the acceptor solution was made of the same acetate buffer. When dialysis was discontinued, the analytes were desorbed from the TEC by the HPLC mobile phase and transferred to the C18 analytical column by means of a switching valve. This mobile phase consisted of a mixture of acetonitrile, pH 3.0 acetate buffer and 2-aminoheptane. The influence of different parameters of the dialysis process on the recovery of verapamil and norverapamil has been studied. The effect of the volume, the aspirating and dispensing flow-rates of the dialysis solution has been investigated. The recoveries of verapamil and norverapamil in plasma were close to 75% and the limits of quantification were 5 ng/ml for both analytes. The method was found to be linear in the concentration range from 5 to 500 ng/ml (r2: 0.9996 for both analytes). The intra-day and inter-day reproducibilities at a concentration of 100 ng/ml were 2.3% and 5.6% for verapamil and 1.7% and 5.1% for norverapamil, respectively.  相似文献   

8.
A liquid chromatographic column-switching system for automated sample pretreatment and determination of clenbuterol in calf urine, using an immunoaffinity precolumn with Sepharose-immobilized polyclonal antibodies against clenbuterol, is described. A second precolumn packed with C18-bonded silica was used for the reconcentration of desorbed clenbuterol prior to the analytical separation. Urine, after 2-fold dilution with buffer (pH 7.4), was loaded directly onto the immuno precolumn, where clenbuterol was trapped by the immobilized antibodies. This immuno precolumn has been used for more than 200 runs with standard solutions and samples. Bound analyte was desorbed with 0.01 M acetic acid and transferred, via the second precolumn, to the analytical column. The total runtime per sample was 35 min. Using a sample load of 27 ml of dilute urine and UV detection at 244 nm, the detection limit was 0.5 ng/ml. The mean recovery of clenbuterol added to a blank urine sample at the 5 ng/ml level was 82 +/- 2% (n = 5) as determined with standard solutions loaded onto the same system. Urine samples from treated animals were analysed and the clenbuterol concentrations were comparable to those obtained by high-performance liquid chromatography using solid-phase extraction for sample clean-up.  相似文献   

9.
The potential of immunoaffinity-based solid-phase extraction (IASPE) coupled on-line to gas chromatography (GC) for the determination of micropollutants was studied with emphasis on the interfacing of the immunoaffinity-based SPE and GC parts of the system. The cartridge containing the immobilized antibodies was coupled to the gas chromatograph via a reversed-phase cartridge (copolymer sorbent). After trace enrichment of the analytes on the immunoaffinity cartridge, they were desorbed and recollected on the reversed-phase cartridge by means of an acidic buffer. After clean-up and drying with nitrogen, desorption and transfer to the GC was done with ethyl acetate via an on-column interface in the partially concurrent solvent evaporation mode. The antibodies used in the immunoaffinity cartridge were raised against atrazine; several s-triazines were used as test compounds. Triazines that were structurally similar to atrazine, showed quantitative recovery. As an application, immunoaffinity SPE–GC was used for the analysis of river and waste water and orange juice. The selectivity of the system was such that non-selective flame ionization detection (FID) could be used to detect the analytes of interest in these complex matrices. The detection limits for 10-ml water samples were 15–25 ng/l for FID and about 1.5 ng/l for the nitrogen–phosphorus detection.  相似文献   

10.
A drying cartridge was used and optimized for the in-line elimination of water from the desorption eluent in on-line solid phase extraction–gas chromatography (SPE–GC). The cartridge is essentially a small stainless-steel precolumn packed with a drying agent which can be regenerated by simultaneous heating and purging with a moisture-free gas. The drying cartridge was mounted on an additional valve instead of between the SPE–GC transfer valve and the on-column injector to enable regeneration of the cartridge during the GC run and, thus, to increase sample throughput. Three drying agents were tested, viz. sodium sulfate, silica, and molecular sieves. Although molecular sieves have the highest capacity, silica was preferred because of practical considerations. Large-volume injections were performed through the in-line drying cartridge using a mixture of 23 microcontaminants ranging widely in polarity and volatility. Four solvents were tested. With pentane and hexane, the more polar analytes were retained by the drying cartridge. Ethyl acetate and methyl acetate gave much better (and closely similar) recoveries for all analytes. Because water elimination on the silica cartridge proved to be less critical than with ethyl acetate, this solvent was finally selected. The entire SPE–drying cartridge–GC set-up was combined with mass spectrometric (MS) detection for the determination of a mixture of micropollutants in real-life water samples. With 10-ml tap water samples spiked at the 0.5 μg/l level, for the majority of the test compounds the analyte recoveries generally were 60–106%, and (full-scan) detection limits typically were 0.01–0.03 μg/l. Some very polar analytes such as, e.g. dimethoate, were (partially) sorbed onto the silica packing of the drying cartridge.  相似文献   

11.
Summary An on-line combination of liquid chromatography, gas chromatography and mass spectrometry has been realized by coupling a quadrupole mass spectrometer to an LC-GC apparatus. Liquid chromatography was used for sample pretreatment of oil samples of different origin. The appropriate LC fraction, containing polycyclic aromatic hydrocarbons, was transferred to the gas chromatograph using a loop-type interface. After solvent evaporation through the solvent vapour exit and subsequent GC separation, the compounds were introduced into the mass spectrometer for detection and identification. The GC column was connected to a short piece of deactivated fused silica that protruded into the ion source. The total analytical set-up allowed the direct analysis of oil samples after dilution in n-pentane without any sample clean-up. Detection limits are about 40 pg in the full scan mode and about 1 pg with selective ion monitoring, i.e. 20 ppb and 0.5 ppb respectively.  相似文献   

12.
An on-line coupling of size-exclusion Chromatography (SEC), normal-phase liquid Chromatography (NPLC), and gas Chromatography (GC) for the characterization of complex hydrocarbon mixtures is described. The hyphenated system separates according to size, polarity, and boiling point. The use of size exclusion as the first separation step allows for the direct injection of complex (“dirty”) samples withont prior clean-up. SEC-NPLC coupling was realized using an on-line solvent evaporator based on fully concurrent solvent evaporation (FCSE) using a modified loop-type interface, vapor exit and co-solvent trapping. Complete reconcentration of the analytes was realized by the introduction of a cryogenic cold trap. For the subsequent hydrocarbon group-type separation an ammo-silica column with n-heptane as eluent was used. The NPLC-GC coupling was based on an on-column interface using partially concurrent solvent evaporation (PCSE) and an early vapor exit. Initial results obtained on the analysis of a residue from the atmospheric crude-oil distillation (a so-called long residue) are presented as an example of the enormous separation power of the SEC-NPLC-GC system. The application of the system for quantitative analysis has not yet been studied.  相似文献   

13.
An integrated system has been developed which combines liquid (LC) and gas (GC) chromatographic separation with a single mass spectrometer (MS). On-line solid-phase extraction (SPE) of 10–200 ml aqueous samples on a short (10 × 2.0 mm I.D.) precolumn packed with a styrene-divinylbenzene copolymer is used for analyte enrichment. The trace-enrichment procedure was automated by means of a PROSPEKT cartridge-exchange/solvent-selection/valve-switching unit. After sample loading, the precolumn is eluted on-line in two subsequent runs, first onto the GC-MS system and, next, onto the LC-MS system using a particle beam (PB) interface. Prior to entering the PB-MS, the LC eluent passes through the flow cell of a UV diode-array detector (DAD). Both GC-MS and LC-PB-MS generate classical electron ionisation (EI) and chemical ionisation (CI) spectra which are useful for the identification of low- and sub-μg/l concentrations of environmental pollutants covering a wide polarity and volatility range. The LC-DAD data provide additional means for quantitation and yield complementary spectral information. All three detection systems (GC-MS, LC-DAD, LC-PB-MS) and the trace-enrichment procedure are fully automated and controlled from the keyboard of the central computer. With such a ‘MULTIANALYSIS’ system GC-MS, LC-DAD and LC-MS data of the same sample can be obtained within 3 h. The system was optimised with nine chlorinated pesticides in drinking water as test mixture. With 100-ml samples detection limits in GC-MS were 0.0005−0.03 μg/l, and in LC-PB-MS 0.5–7 μg/l, both in the full-scan (EI) mode. Negative chemical ionisation (NCI) with methane as reagent gas improved the sensitivity of six halogenated compounds 3- to 30-fold and provided relevant information for structural elucidation of unknown compounds in real-world samples. LC-DAD detection limits varied from 0.01 to 0.05 μg/l. Relative standard deviations (R.S.D.) of retention times were less than 0.2% in all systems, R.S.D.s of peak areas were 5–15% for GC-MS and LC-PB-MS and less than 5% for LC-DAD. The ‘MULTIANALYSIS’ system was used to analyse surface water samples and river sediment extracts; several pollutants were detected and identified.  相似文献   

14.
Progress during the last 5 years in on-line LC-GC and related techniques is reviewed. In normal-phase LC-GC, the wire interface proved to have advantages over the loop type interface. Further investigations on the solvent evaporation process in an uncoated precolumn under conditions of an early vapour exit revealed that the rules for the transfer by the retention gap techniques must be modified. For reversed-phase LC-GC, approaches with a phase transfer compete with direct evaporation. Eluents were extracted into a bed of Tenax located in a programmed-temperature vaporiser and thermally desorbed. Direct evaporation is possible when a hot vaporising chamber is used and solvent/solute separation occurs in a separate compartment, a coated precolumn possibly in combination with packed beds. As a future strategy, LC-GC transfer techniques should be adjusted to those of large volume injection and involve a single device. It is believed that on-column injection/transfer is the choice. This requires that concurrent evaporation in LC-GC is performed by the on-column interface.  相似文献   

15.
Concurrent solvent evaporation with a loop-type interface was used for on-line HPLC-CGC in the analysis of methylated dibenzothiophene (DBT) isomers in oil samples. The chromatographic behavior of 20 methyl DBT's was studied by HPLC on an aminopropylsilane DBTA phase and by GC on a selective methyl-phenylsilicone phase. That provided a method for analyzing by GC-flame photometric detection, the individual components of the DBT family, previously picked out of the crude oil matrix by HPLC. The GC oven temperature was shown to be critical during HPLC eluent introduction into the GC pre-column. Too high a temperature induced a severe broadening of early eluted peaks whereas a temperature too close to the boiling point of the liquid at the inlet pressure induced double peaks. Optimized conditions were retained on this basis and may be used for the analysis of other families of polyaromatic hydrocarbons.  相似文献   

16.
A HPLC method with automated column switching was developed and validated for the determination of Ro 63-1908 in rat and cynomolgus monkey plasma. Human plasma was used for calibration and was also included in the validation process. Ro 63-1908 belongs to a class of neuroprotective N-methyl-D-aspartate (NMDA) receptor blockers which were in development for the treatment of stroke and traumatic brain injury. The method involves deproteinisation of plasma samples with ethanol and direct injection of the supernatant (1.4 ml) into the HPLC column-switching system. To prevent a breakthrough of the analyte and the internal standard on the precolumn (Purospher RP-18, 75x4 mm) due to the high ethanol content, the injection solution was diluted, on-line, using an additional pump and a T-piece. 1% ammonium acetate-ethanol (100:2, v/v) was used as mobile phase for injection, as well as for on-line dilution, resulting in pre-concentration of the analyte and the internal standard on the precolumn. As Purospher RP-18 is a non-endcapped stationary phase with a special selectivity for amines, the analyte and the internal standard could then be selectively eluted with 30% acetonitrile (without any buffer in the mobile phase) and transferred to the analytical column [consisting of two coupled columns (125+250x4 mm) packed with Superspher 60 RP-select B], where they were separated by gradient elution and detected by fluorescence detection. Compared to the use of a 125 mm long precolumn and dilution of the supernatant with ammonium acetate prior to injection, the 75 mm precolumn and the on-line dilution procedure allowed about one third shorter run times (21 min) and, therefore, a higher sample throughput. The limit of quantification was 1 ng/ml using 0.4 ml plasma. The method was applied to more than 670 plasma samples from pharmacokinetic and toxicokinetic studies and is also suitable for other matrices and NMDA receptor blockers.  相似文献   

17.
An on-line LC-GC method for the analysis of mono-, di-, and triacylglycerols in vegetable oil methyl esters has been developed. The concentrations of these components have turned out to be key parameters for the quality of diesel fuel substitutes. Separation of all classes of acylglycerols from the fatty acid methyl ester matrix is achieved by LC after acetylation of the hydroxyl groups. The acylglycerol fraction is transferred on-line to GC, using the loop-type interface and concurrent eluent evaporation. Quantification of mono-, di-, and triacylglycerols is performed by combining external calibration with internal standardization. Both recovery of the procedure and reproducibility of the quantitative results are evaluated.  相似文献   

18.
Summary An on-line procedure is described for the trace-level determination of mono-, di- and methyl-chloroanilines in aqueous samples using selective preconcentration with a cation-exchanger and liquid chromatography with UV and electrochemical detection. Because direct percolation through a cation-exchanger has to be avoided owing to the high content of inorganic anions present in natural waters, a two-step on-line preconcentration was carried out: chloroanilines were first trapped on a precolumn packed with an apolar polymeric sorbent (PRP-1) in their neutral form. Then the PRP-1 precolumn was coupled in series with a second precolumn containing cation exchange material. The chloroanilines were removed from the first precolumn with 3 mL of deionised water: acetonitrile (31) at pH 1 and retained by the cation exchange column. The contents of the cation exchange column were finally desorbed onto the analytical column and eluted with a water: acetonitrile gradient. The combination of selective trace enrichment and sensitive electrochemical detection allows the simultaneous determination of chloroanilines from 150 mL of river water samples with detection limits below 30 ng/l. Identification is confirmed by the selective preconcentration and the two detection modes.  相似文献   

19.
A HPLC method with automated column switching was developed and validated for the determination of Ro 63-1908 in rat and cynomolgus monkey plasma. Human plasma was used for calibration and was also included in the validation process. Ro 63-1908 belongs to a class of neuroprotective N-methyl- -aspartate (NMDA) receptor blockers which were in development for the treatment of stroke and traumatic brain injury. The method involves deproteinisation of plasma samples with ethanol and direct injection of the supernatant (1.4 ml) into the HPLC column-switching system. To prevent a breakthrough of the analyte and the internal standard on the precolumn (Purospher RP-18, 75×4 mm) due to the high ethanol content, the injection solution was diluted, on-line, using an additional pump and a T-piece. 1% ammonium acetate–ethanol (100:2, v/v) was used as mobile phase for injection, as well as for on-line dilution, resulting in pre-concentration of the analyte and the internal standard on the precolumn. As Purospher RP-18 is a non-endcapped stationary phase with a special selectivity for amines, the analyte and the internal standard could then be selectively eluted with 30% acetonitrile (without any buffer in the mobile phase) and transferred to the analytical column [consisting of two coupled columns (125+250×4 mm) packed with Superspher 60 RP-select B], where they were separated by gradient elution and detected by fluorescence detection. Compared to the use of a 125 mm long precolumn and dilution of the supernatant with ammonium acetate prior to injection, the 75 mm precolumn and the on-line dilution procedure allowed about one third shorter run times (21 min) and, therefore, a higher sample throughput. The limit of quantification was 1 ng/ml using 0.4 ml plasma. The method was applied to more than 670 plasma samples from pharmacokinetic and toxicokinetic studies and is also suitable for other matrices and NMDA receptor blockers.  相似文献   

20.
A method using an automated on-line purge and trap gas chromatograph with a dry electrolytic conductivity detector (DELCD) has been developed for monitoring four regulated trihalomethanes in drinking water distribution systems. This analyzer samples trihalomethanes from drinking water by pervaporation through a silicone capillary membrane contained within a gas extraction cell (GEC) followed by preconcentration using an adsorbent trap. Trihalomethanes are subsequently desorbed from the trap onto a capillary column, separated and detected. The analyzer operates in real-time, samples directly from the drinking water distribution system and is fully automated. The optimization, operation, and evaluation of the analyzer and method are discussed. Method detection limits (MDL) are less than 1.0 μg L−1 with acceptable estimates for accuracy, and precision. The results from two on-line monitoring studies in chlorinated and chloraminated distribution systems are presented. The performance of the method is compared directly to United Stated Environmental Protection Agency Method 502.2 and shows a very slight, but acceptable bias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号