共查询到18条相似文献,搜索用时 78 毫秒
1.
针对粘弹塑性统一本构模型参效众多的特点和传统评估参效方法的缺点,应用非线性最小二秉法与敏感系数分析方法相结合,提出了一个比较系统的对粘弹塑性统一本构模型的参数进行评估的方法。对铜合金在室温下不同加载速率的试验曲线进行参数适配,表明本方法的合理性与正确性。为粘弹塑性统一本构模型的工程应用奠定了基础。 相似文献
2.
经过对大量有关统一本构模型的文献资料分析,指出了现有统一本构模型存在的问题,并通过对材料实验数据的分析,指出了黏弹性现象在实验中的表现,并据此将黏弹性引入到弹性黏塑性统一本构模型之中,建立了黏弹塑性统一本构模型,通过模型的数值模拟证明:模型计算结果无论在变形趋势上,还是在数值精度上都与实验数据符合得很好,克服了此前统一本构模型存在的问题。黏弹塑性统一本构模型的产生将统一本构模型的产生将统一本构理论的内涵扩大到黏弹性范围,进而构造了一个黏弹塑性理论的新框架。 相似文献
3.
本文综述粘弹塑性材料力学行为的研究概况和近期进展,探讨粘弹塑性本构关系的研究途径和表达形式,阐述粘弹塑性理论研究的重要意义和广阔的应用前景。 相似文献
4.
一种弹性粘塑性统一本构模型 总被引:1,自引:0,他引:1
在深入研究分析材料变形过程的基础上,对材料变形与选定描述材料变形内变量的问题进行探讨,在唯象法的基础上提出一种金属材料变形的粘塑性统一本构模型.用该模型对304不锈钢的变形过程进行模拟,其计算结果较Miller模型更接近实验结果. 相似文献
5.
6.
7.
在连续介质力学基础上建立了一个广义双剪粘弹塑性海冰动力学本构模型。该模型在海冰屈服前采用Kelvin-Vogit粘弹性模型,考虑中间主应力和静水压力对海冰屈服的影响选用广义双剪应力屈服准则作为海冰屈服判据,屈服后采用相关联的正则流动法则。采用该本构模型对渤海海冰动力过程进行了48小时数值模拟,讨论了辽东湾海冰的厚度、密集度、冰速和主应力的分布规律,其中海冰厚度分布与卫星遥感资料符合良好,从而有效地验证了该广义双剪粘弹塑性本构模型在海冰动力学中的可靠性。 相似文献
8.
9.
10.
11.
In this paper, the proposed is a quasi-flow constitutive model with strain-rate sensitivity for elastic plastic large deformation. The model is based on the Quasi-flow Corner theory, and is suitable for the sheet metal forming process simulation with a variable punch machine velocity. Uniaxial tensile tests and deep-drawing tests of a circular blank with square punch are carried out and numerically simulated. The consistency between the experimental and the numerically simulated results shows the validity of the present new constitutive model. The project supported by the Scientific Foundation of National Outstanding Youth of China (10125208), the National Natural Science Foundation of China (19832020), and the National Education Committee of China 相似文献
12.
A constitutive model for cyclic plasticity is briefly outlined. Then the model is implemented in a finite element code to predict the response of cyclic loaded structural components such as a double-edge-notched plate, a grove bar and a nozzle in spherical shell. Comparision with results from other theories and experiments shows that the results obtained by using the present model are very satisfactory.The Project Supported by National Natural Science Foundation of China. 相似文献
13.
A glide-plus-climb micromechanism of dislocation evolution with the formation of subgrains is proposed for modelling of the
creep-plasticity interaction (CPI). The long-range internal stress can be divided into the resistance for dislocation climb
in subgrain boundaries and that for dislocation glide within grains or subgrains. Their evolution equations are then derived
based on dislocation dynamics. Furthermore, a unified constitutuve model for CPI is developed from Orowan's formula. Theoretical
calculations on the basis of this model show a very good agreement between the model prediction and experimental results of
benchmark tests for 2 1/4 Cr-1 Mo steel at 600°C. 相似文献
14.
I.IntroductionTheresearchoncrystalplasticitycanbedatedbackto1930'sill.AherHill[=],HillandRicely]builtupaperfectsystemofthegeometryandkineticsofCrystalplasticity,itsapplicatiollbecolllesmoreandmoreattractive,especiallyintheallalysisofpolycrystallinelllaterialssubjectedtoInultiaxiallynonproportionalcyclicloading.Ithasalreadybeenrealizedthattileillll,ol'talltforthepracticalapplicationis:tofindal.ealisticalldeasilyapplicableof'ystallineconstitutiverelationandaneffectivenumericalapproach.Tilecon… 相似文献
15.
Based on pair functional potentials, Cauchy-Born rule and slip mechanism, a material model assembling with spring-bundle components, a cubage component and slip components is established to describe the elasto-plastic damage constitutive relation under finite deformation. The expansion/shrink, translation and distortion of yield surfaces can be calculated based on the hardening rule and Bauschinger effect defined on the slip component level. Both kinematic and isotropic hardening are included. Numerical simulations and predictions under tension, torsion, and combined tension-torsion proportional/non-proportional loading are performed to obtain the evolution of subsequent yield surfaces and elastic constants and compare with two sets of experimental data in literature, one for a very low work hardening aluminum alloy Al 6061-T6511, and another for a very high work hardening aluminum alloy annealed 1100 Al. The feature of the yield surface in shape change, which presents a sharp front accompanied by a blunt rear under proportional loading, is described by the latent hardening and Bauschinger effect of slip components. Further, the evolution law of subsequent yield surfaces under different proportional loading paths is investigated in terms of their equivalence. The numerical simulations under non-proportional loading conditions for annealed 1100 Al are performed, and the subsequent yield surfaces exhibit mixed cross effect because the kinematic hardening and isotropic hardening follow different evolution tendency when loading path changes. The results of non-proportional loading demonstrate that the present model has the ability to address the issue of complex loading due to the introduction of state variables on slip components. Moreover, as an elasto-plastic damage constitutive model, the present model can also reflect the variation of elastic constants through damage defined on the spring-bundle components. 相似文献
16.
17.
One of fundamental but difficult problems in damage mechanics is the formulation of the effective constitutive relation of microcrack-weakened brittle or quasi-brittle materials under complex loading, especially when microcrack interaction is taken into account. The combination of phenomenological and micromechanical damage mechanics is a promising approach to constructing an applicable damage model with a firm physical foundation. In this paper, a quasi-micromechanical model is presented for simulating the constitutive response of microcrack-weakened materials under complex loading. The microcracking damage is characterized in terms of the orientation domain of microcrack growth (DMG) as well as a scalar microcrack density parameter. The DMG describes the complex damage and its evolution associated with microcrack growth, while the scalar microcrack density factor defining the isotropic magnitude of damage yields an easy calculation of the effects of microcrack interaction on effective elastic moduli. Project supported by the National Natural Science Foundation of China (19891180). 相似文献
18.
Yi-Chao Chen Dimitris C. Lagoudas 《Journal of the mechanics and physics of solids》2008,56(5):1766-1778
A constitutive theory is developed for shape memory polymers. It is to describe the thermomechanical properties of such materials under large deformations. The theory is based on the idea, which is developed in the work of Liu et al. [2006. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modelling. Int. J. Plasticity 22, 279-313], that the coexisting active and frozen phases of the polymer and the transitions between them provide the underlying mechanisms for strain storage and recovery during a shape memory cycle. General constitutive functions for nonlinear thermoelastic materials are used for the active and frozen phases. Also used is an internal state variable which describes the volume fraction of the frozen phase. The material behavior of history dependence in the frozen phase is captured by using the concept of frozen reference configuration. The relation between the overall deformation and the stress is derived by integration of the constitutive equations of the coexisting phases. As a special case of the nonlinear constitutive model, a neo-Hookean type constitutive function for each phase is considered. The material behaviors in a shape memory cycle under uniaxial loading are examined. A linear constitutive model is derived from the nonlinear theory by considering small deformations. The predictions of this model are compared with experimental measurements. 相似文献