首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We describe the use of organic catalysis for the ring‐opening polymerization of functionalized lactones and conversion of the resulting aliphatic polyesters into crosslinked nanoparticles that carry additional functional groups amenable to further modification. Specifically, highly functional aliphatic polyester homopolymers, as well as random and block copolymers, were prepared by 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene catalysis, giving polyesters with pendent alkene and alkyne groups. Azide‐alkyne click and thiol‐ene chemistries were used for postpolymerization modification of diblock copolymers possessing alkene groups on one block and alkyne groups on the other block. The polyesters were crosslinked using azide/alkyne cycloaddition, by reaction of α,ω‐diazides with the pendent alkynes on the polyester backbone. This gave polyester nanoparticles possessing alkene functionality, which were subjected to further modification using thiol‐ene reactions to introduce additional functionality. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
Post‐polymerization modification (PPM) of polymers is extremely beneficial in terms of designing brand new synthetic pathways toward functional complex polymers. Fortunately, the new developments in the field of organic chemistry along with controlled/living radical polymerization (CLRP) techniques have enabled scientists to readily design and synthesize the functionalized‐polymers for wide range of applications via the PPM. In this regard, the reactivity of para‐fluorine atom in the fluorinated aromatic structures toward the nucleophilic substitution reactions has made the polymers possessing this group to become a very strong candidate that can undergo efficient PPM. Besides, it has been proven that the thiol‐functionalized compounds react with the para‐fluorine atom of the pentafluorophenyl group more rapidly and efficiently than the amine‐ and the hydroxyl‐functionalized compounds. Furthermore, the milder experimental conditions to achieve quantitative conversions have led to the reaction between the thiol and the structures possessing pentafluorophenyl groups to be referred to as a click‐type reaction. Given this information, this review article aims to present the scientific developments regarding the thiol‐para‐fluoro “click” (TPF‐click) chemistry, and its impact on PPM to construct novel polymeric structures. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1181–1198  相似文献   

3.
Aliphatic polycarbonate (PC) copolymer is synthesized by ring opening copolymerization of acrylate‐ and allyl‐functional cyclic carbonate monomers. The post‐polymerization functionalization of the resulting copolymer is performed quantitatively using a variety of thiol compounds via sequential Michael addition and photo‐induced radical thiol‐ene click reactions within relatively short reaction time at ambient temperature. This metal‐free click chemistry methodology affords the synthesis of biocompatible PC copolymer with multifunctional groups. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1581–1587  相似文献   

4.
Proton transfer polymerization through thiol‐epoxy “click” reaction between commercially available and hydrophilic di‐thiol and di‐epoxide monomers is carried out under ambient conditions to furnish water‐soluble polymers. The hydrophilicity of monomers permitted use of aqueous tetrahydrofuran as the reaction medium. A high polarity of this solvent system in turn allowed for using a mild catalyst such as triethylamine for a successful polymerization process. The overall simplicity of the system translated into a simple mixing of monomers and isolation of the reactive polymers in an effortless manner and on any scale required. The structure of the resulting polymers and the extent of di‐sulfide defects are studied with the help of 13C‐ and 1H‐NMR spectroscopy. Finally, reactivity of the synthesized polymers is examined through post‐polymerization modification reaction at the backbone sulfur atoms through oxidation reaction. The practicality, modularity, further functionalizability, and water solubility aspects of the described family of new poly(β‐hydroxythio‐ether)s is anticipated to accelerate investigations into their potential utility in bio‐relevant applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3381–3386  相似文献   

5.
Following Sharpless′ visionary characterization of several idealized reactions as click reactions, the materials science and synthetic chemistry communities have pursued numerous routes toward the identification and implementation of these click reactions. Herein, we review the radical‐mediated thiol–ene reaction as one such click reaction. This reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield. Further, the thiol–ene reaction is most frequently photoinitiated, particularly for photopolymerizations resulting in highly uniform polymer networks, promoting unique capabilities related to spatial and temporal control of the click reaction. The reaction mechanism and its implementation in various synthetic methodologies, biofunctionalization, surface and polymer modification, and polymerization are all reviewed.  相似文献   

6.
The construction of amphiphilic polycarbonates through epoxides/CO2 coupling is a challenging aim to provide more diverse CO2‐based functional materials. In this report, we demonstrate the facile preparation of diverse and functional nanoparticles derived from a CO2‐based triblock polycarbonate system. By the judicious use of water as chain‐transfer reagent in the propylene oxide/CO2 polymerization, poly(propylene carbonate (PPC) diols are successfully produced and serve as macroinitiators in the subsequent allyl glycidyl ether/CO2 coupling reaction. The resulting ABA triblock polycarbonate can be further functionalized with various thiols by radical mediated thiol–ene click chemistry, followed by self‐assembly in deionized water to construct a versatile and functional nanostructure system. This class of amphiphilic polycarbonates could embody a powerful platform for biomedical applications.  相似文献   

7.
We report the recent progress in the preparation of functional poly(disubstituted acetylene)s (PDSAs) through post‐polymerization modification routes. The metathesis polymerization of disubstituted acetylene monomers activated by Mo/W–Sn complex catalysts, which do not tolerate highly polar functionalities, was assumed to be a key step in the polymer synthetic procedures. We and other groups have explored several approaches to prepare PDSAs with latent reactive functionalities, which are inactive to Mo/W–Sn complex catalysts but can be used as highly reactive sites for post‐polymerization modification. Click chemistry, Michael‐type addition reactions, the use of activated esters and other strategies are demonstrated by recently published examples. These works indicate that post‐polymerization modification is an efficient route to the synthesis of various functional PDSAs.  相似文献   

8.
ABC type miktoarm star copolymer with polystyrene (PS), poly(ε‐caprolactone) (PCL) and poly(ethylene glycol) (PEG) arms was synthesized using controlled polymerization techniques in combination with thiol‐ene and copper catalyzed azide‐alyne “click” reactions (CuAAC) and characterized. For this purpose, 1‐(allyloxy)‐3‐azidopropan‐2‐ol was synthesized as the core component in a one‐step reaction with high yields (96%). Independently, ω‐thiol functionalized polystyrene (PS‐SH) was synthesized in a two‐step protocol with a very narrow molecular weight distribution. The bromo end function of PS obtained by atom transfer radical polymerization was first converted to xanthate function and then reacted with 1, 2‐ethandithiol to yield desired thiol functional polymer (PS‐SH). The obtained polymer was grafted onto the core by thiol‐ene click chemistry. In the following stage, ε‐caprolactone monomer was polymerized from the core by ring opening polymerization (ROP) using tin octoate as catalyst through hydroxyl groups to form the second arm. Finally, PEG‐acetylene, which was simply synthesized by the esterification of Me‐PEG and 5‐pentynoic acid, was clicked onto the core through azide groups present in the structure. The intermediates at various stages and the final miktoarm star copolymer were characterized by 1H NMR, FTIR, and GPC measurements. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
A straightforward, novel strategy based on the in situ functionalization of polymers prepared by nitroxide‐mediated polymerization (NMP), for the use as an extension toward block copolymers and post‐polymerization modifications, has been investigated. The nitroxide end group is exchanged for a thiocarbonylthio end group by a rapid transfer reaction with bis(thiobenzoyl) disulfide to generate in situ reversible addition–fragmentation chain transfer (RAFT) macroinitiators. Moreover, not only have these macroinitiators been used in chain extension and block copolymerization experiments by the RAFT process but also a thiol‐terminated polymer is synthesized by aminolysis of the RAFT end group and subsequently reacted with dodecyl vinyl ether by thiol‐ene chemistry.  相似文献   

10.
The ability of thiyl radicals to add to terminal unsaturations in an efficient way made them considered being one of the click reactions. Recently, thiol‐yne addition reactions have been used extensively for the synthesis of crosslinked networks and dendrimers and postpolymerization functionalization protocols. Herein, we report a novel step‐growth type reaction for highly functional linear polymers using a monoalkyne and dithiol compound. First, we investigated the model reaction between 1‐octyne and 1‐octanethiol as well as 1,4‐butanedithiol compounds, which were initiated via self‐, thermal‐, and UV‐initiation; the UV‐initiation was found to be the most efficient method and completed within 2‐h reaction time. The same conditions were applied for the polymerization of four different functional alkynes bearing different functional groups with two dithiol compounds. All polymerizations resulted in highly functional linear polymers with number averaged molecular weights ranging from 5 to 30 kDa, except for propargylic acid and its methyl ester, where only oligomers formed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
熊兴泉  唐忠科  蔡雷 《化学进展》2012,(9):1751-1764
可逆加成-裂解链转移聚合(RAFT)由于单体适用面广、聚合条件温和、不受聚合方法的限制等特性, 已经成为活性合成聚合物的有效手段之一。点击化学(click chemistry)由于具有良好的选择性、模块性以及官能团耐受性等特点迅速成为许多研究领域,如药物、聚合物、功能材料等合成的有力工具,同时涌现出了多种基于巯基的点击反应。本文综述了近年来基于巯基的点击反应, 如巯基-烯、巯基-炔、巯基-异氰酸酯、巯基-环氧化物以及巯基-卤代烃等新型点击反应与RAFT聚合相结合在功能性聚合物的制备和修饰中的应用, 相信这两种手段的结合将在其中发挥积极的作用。  相似文献   

12.
In this article, the synthesis and the functionalization of well‐defined, narrow polydispersity (polydispersity index < 1.2) star polymers via reversible addition‐fragmentation chain transfer polymerization is detailed. In this arm first approach, the initial synthesis of a poly(pentafluorophenyl acrylate) polymer, and subsequent, cross‐linking using bis‐acrylamide to prepare star polymers, has been achieved by reversible addition fragmentation chain transfer polymerization. These star polymers were functionalized using a variety of amino functional groups via nucleophilic substitution of pentafluorophenyl activated ester to yield star polymers with predesigned chemical functionality. This approach has allowed the synthesis of star glycopolymer using a very simple approach. Finally, the core of the stars was modified via thiol‐ene click chemistry reaction using fluorescein‐o‐acrylate and DyLigh 633 Maleimide. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
It is demonstrated that bifunctionalized polythiophenes involving thiol and azide end‐functional groups can be synthesized by chain‐growth Suzuki‐Miyaura type polymerization. The bifunctionalized polythiophenes are successfully characterized by 1H NMR, gel permeation chromatography (GPC), and matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF). Furthermore, the azide end‐group reacts with DNA via “click chemistry” to form a polythiophene/DNA hybrid structure, which is characterized by ESI‐MS. The described synthetic approaches will lead to the synthesis of novel multi‐block copolymers as well as biomolecule‐based conjugated polymer structures.  相似文献   

14.
Synthetic polymer approaches generally lack the ability to control the primary sequence, with sequence control referred to as the holy grail. Two click chemistry reactions were now combined to form nucleobase‐containing sequence‐controlled polymers in simple polymerization reactions. Two distinct approaches are used to form these click nucleic acid (CNA) polymers. These approaches employ thiol–ene and thiol‐Michael reactions to form homopolymers of a single nucleobase (e.g., poly(A)n) or homopolymers of specific repeating nucleobase sequences (e.g., poly(ATC)n). Furthermore, the incorporation of monofunctional thiol‐terminated polymers into the polymerization system enables the preparation of multiblock copolymers in a single reaction vessel; the length of the diblock copolymer can be tuned by the stoichiometric ratio and/or the monomer functionality. These polymers are also used for organogel formation where complementary CNA‐based polymers form reversible crosslinks.  相似文献   

15.
Base‐catalyzed reaction between a thiol and an epoxide group is a simple fusion process that leads to the formation of a β‐hydroxythio‐ether linkage. This reaction is efficient, regio‐selective, and fast. In addition, it produces a reactive hydroxyl group upon completion. Therefore, it is of considerable potential in synthesis of reactive and functional soft materials. Here, we discuss the fundamental aspects of this process, the so‐called thiol‐epoxy “click” reaction, and its utility in the preparation and post‐polymerization functionalization of polymers and crosslinked networks. Furthermore, its application in surface modification of solid substrates is also considered. Finally, utility of multifunctional materials created using the thiol‐epoxy reaction is discussed in the biomedical arena. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3057–3070  相似文献   

16.
Sequential thiol‐ene/thiol‐ene and thiol‐ene/thiol‐yne reactions have been used as a facile and quantitative method for modifying end‐groups on an N‐isopropylacrylamide (NIPAm) homopolymer. A well‐defined precursor of polyNIPAm (PNIPAm) was prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization in DMF at 70 °C using the 1‐cyano‐1‐methylethyl dithiobenzoate/2,2′‐azobis(2‐methylpropionitrile) chain transfer agent/initiator combination yielding a homopolymer with an absolute molecular weight of 5880 and polydispersity index of 1.18. The dithiobenzoate end‐groups were modified in a one‐pot process via primary amine cleavage followed by phosphine‐mediated nucleophilic thiol‐ene click reactions with either allyl methacrylate or propargyl acrylate yielding ene and yne terminal PNIPAm homopolymers quantitatively. The ene and yne groups were then modified, quantitatively as determined by 1H NMR spectroscopy, via radical thiol‐ene and radical thiol‐yne reactions with three representative commercially available thiols yielding the mono and bis end functional NIPAm homopolymers. This is the first time such sequential thiol‐ene/thiol‐ene and thiol‐ene/thiol‐yne reactions have been used in polymer synthesis/end‐group modification. The lower critical solution temperatures (LCST) were then determined for all PNIPAm homopolymers using a combination of optical measurements and dynamic light scattering. It is shown that the LCST varies depending on the chemical nature of the end‐groups with measured values lying in the range 26–35 °C. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3544–3557, 2009  相似文献   

17.
Post‐polymerization modification is based on the direct polymerization or copolymerization of monomers bearing chemoselective handles that are inert towards the polymerization conditions but can be quantitatively converted in a subsequent step into a broad range of other functional groups. The success of this method is based on the excellent conversions achievable under mild conditions, the excellent functional‐group tolerance, and the orthogonality of the post‐polymerization modification reactions. This Review surveys different classes of reactive polymer precursors bearing chemoselective handles and discusses issues related to the preparation of these reactive polymers by direct polymerization of appropriately functionalized monomers as well as the post‐polymerization modification of these precursors into functional polymers.  相似文献   

18.
环状聚合物具有不同于线性高分子的独特性质,是一类具有应用前景的新型聚合物材料,但复杂的结构导致其合成过程复杂繁琐."点击"化学由于其高效、可靠、高选择性的特点已成为拓扑高分子合成的新方法,活性自由基聚合(ATRP、RAFT和NMP)具有聚合物结构可控等特点,二者联用为环状聚合物的合成拓宽了思路.本文就近几年"点击"反应、"点击"反应与活性自由基聚合联用以及其他方法联用在环状聚合物中的应用进行综述."点击"反应与这些方法的结合将在功能性环状聚合物的设计与合成中发挥积极的作用.  相似文献   

19.
We report a series of biocompatible and biodegradable block copolymers of poly(ε‐caprolactone) with “clickable” polyphosphoester (PPE). The block copolymers are synthesized through controlled ring‐opening polymerization of five‐membered cyclic phosphoester monomer, propargyl ethylene phosphate (PAEP), initiated with poly(ε‐caprolactone) macroinitiator. The polymerization followed first‐order kinetics with living polymerization characteristics, thus the molecular weight and composition of copolymers are tunable by adjusting the feed ratio of PAEP monomer to macroinitiator. Azide‐functionalized poly(ethylene glycol) has been grafted to the copolymer to demonstrate the reactive feasibility by Cu(I)‐catalyzed “click” chemistry of azides and alkynes, generating “brush‐coil” polymers. The mild conditions associated with the click reaction are shown to be compatible with poly(ε‐caprolactone) and PPE backbones, rendering the click reaction a generally useful method for grafting numerous types of functionality onto the block copolymers. The block copolymers also show good biocompatibility to cells, suggesting their suitability for a range of biomaterial applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Two complementary tandem strategies based on the one‐pot combination of click chemistry and atom transfer radical polymerization (ATRP) are studied. Initially, functionalized random copolymers are obtained by copolymerization of methyl methacrylate and propargyl methacrylate simultaneously to the click chemistry coupling of a monofunctional azide. Then, an approach based on the copolymerization of methyl methacrylate and 11‐azido‐undecanoyl methacrylate simultaneously to the click chemistry coupling of a monofunctional alkyne is also investigated. For both the approach, polymerization and click chemistry coupling are catalyzed by CuBr and bipyridine (Bipy) in diphenylether at 90 °C. The [Bipy]/[CuBr] ratio is varied from 2 to 25 and the ratio of functionalized comonomer from 20 to 70 mol %. Both the tandem strategies proceed with good yields (50–80%) and allow a good control over the characteristics of the resulting random copolymers and macromolecular brushes (Mn ~ 15,000–40,000 g/mol and PDI ~ 1.3–2.0) as well as quantitative click functionalization as characterized by 1H NMR and size exclusion chromatography analyses. Although the click process is generally completed at the early stage of the process, the rate of polymerization depends on the amount of bipyridine involved. It was found that extending most of the polymerization process out of the click reaction regime results in a better control of the polymerization, preventing the significant occurrence of side reactions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3803–3813, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号