首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis of tetracene‐ and pentacene‐annulated norbornadienes, formed through the Diels–Alder reaction of a dehydroacene with cyclopentadiene is reported. Ring‐opening metathesis polymerization (ROMP) leads to polymers that are investigated with respect to their physical, optical, and electronic properties by gel permeation chromatography (GPC), UV–vis spectroscopy, and cyclic voltammetry. The pentacene‐containing polymer P1 is successfully integrated into an organic field‐effect transistor (OFET); the tetracene‐containing polymer P2 is integrated into an organic light‐emitting diode (OLED).

  相似文献   


2.
The formation of a poly(2,6‐carbazole) derivative during an electrochemical polymerization process is shown. Comparison of 3,5‐bis(9‐octyl‐9H‐carbazol‐2‐yl)pyridine and 3,5‐bis(9‐octyl‐9H‐carbazol‐3‐yl)pyridine by electrochemical and UV–Vis‐NIR spectroelectrochemical measurements and DFT (density functional theory) calculation prove the formation of a poly(2,6‐carbazole) derivative. Both of the compounds form stable and electroactive conjugated polymers.

  相似文献   


3.
A double hydrophilic block copolymer, poly(ethylene glycol)‐poly(3‐dimethyl (methacryloyloxyethyl) ammonium propane sulfonate) (PEG‐SB), is synthesized by reversible addition‐fragmentation transfer (RAFT) polymerization using PEG methyl ether (4‐cyano‐4‐pentanoate dodecyl trithiocarbonate) as a chain transfer agent. PEG‐SB forms multi‐layered microspheres with dipole‐dipole interactions of the SB side chains as the driving force. The PEG‐SB polymers show an upper critical solution temperature (UCST) and the UCST is controllable by the polymerization degree. The PEG‐SB microspheres are dissociated above the UCST and then monodispersed microspheres (∼1 μm) are obtained when the solution temperature is decreased below the UCST again. The disassociation/association of the microspheres is also controllable using the concentration of NaCl. These multi‐responsive microspheres could be a powerful tool in the field of nano‐biotechnology.

  相似文献   


4.
A simple and effective airflow method to prepare sandwich‐type block copolymer films is reported. The films are composed of three layers: vertically oriented nanocylinders align in both upper and bottom layers and irregular nanocylinders exist in the bulk of the film. The vertically oriented nanocylinders in both sides can provide high accessibility to ions and ensures the exchange of chemical species between the membrane and external environment, while the irregularly oriented nanocylinders in the middle part of the film can prolong the pathway of ions transportation and enhance ions selectivity.

  相似文献   


5.
Diarylbutadiyne derivatives are ideal monomers for providing the π‐electron‐conjugated system of polydiacetylenes (PDAs). The geometrical parameters for diacetylene topochemical polymerization are known. However, control of the molecules under these parameters is yet to be addressed. This work shows that by simply tailoring diarylbutadiyne with amide side‐chain substituents, the arrangement of the substituents and the resulting hydrogen bond framework allows formation of π‐electron‐conjugated PDA.

  相似文献   


6.
A novel and non‐cytotoxic self‐healing supramolecular elastomer (SE) is synthesized with small‐molecular biological acids by hydrogen‐bonding interactions. The synthesized SEs behave as rubber at room temperature without additional plasticizers or crosslinkers, which is attributed to the phase‐separated structure. The SE material exhibits outstanding self‐healing capability at room temperature and essential non‐cytotoxicity, which makes it a potential candidate for biomedical applications.

  相似文献   


7.
Inspired by the multifunctionality of vitamin D‐binding protein and the multiple transient‐binding behavior of some intrinsically disordered proteins (IDPs), a polymeric platform is designed, prepared, and characterized for combined delivery of dermal protective and anticancer bioactive cargos on the basis of artificial single‐chain nano‐objects mimicking IDPs. For the first time ever, simultaneous delivery of folic acid or vitamin B9, and hinokitiol, a relevant natural bioactive compound that exhibits anticancer activity against human malignant melanoma cells, from these multidirectionally self‐assembled unimolecular nanocarriers is illustrated.

  相似文献   


8.
The hierarchical self‐assembly of an amphiphilic block copolymer, poly(N,N‐dimethylacrylamide)‐block‐polystyrene with a very short hydrophilic block (PDMA10b‐PS62), in large granular nanoparticles is reported. While these nanoparticles are stable in water, their disaggregation can be induced either mechanically (i.e., by applying a force via the tip of the cantilever of an atomic force microscope (AFM)) or by partial hydrolysis of the acrylamide groups. AFM force spectroscopy images show the rupture of the particle as a combination of collapse and flow, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of partly hydrolyzed nanoparticles provide a clear picture of the granular structure.

  相似文献   


9.
A new method for fabricating hydrogels with intricate control over hierarchical 3D porosity using microfiber porogens is presented. Melt electrospinning writing of poly(ε‐caprolactone) is used to create the sacrificial template leading to hierarchical structuring consisting of pores inside the denser poly(2‐oxazoline) hydrogel mesh. This versatile approach provides new opportunities to create well‐defined multilevel control over interconnected pores with diameters in the lower micrometer range inside hydrogels with potential applications as cell scaffolds with tunable diffusion and transport of, e.g., nutrients, growth factors or therapeutics.

  相似文献   


10.
An extrinsic self‐healing coating system containing tetraphenylethylene (TPE) in microcapsules was monitored by measuring aggregation‐induced emission (AIE). The core healing agent comprised of methacryloxypropyl‐terminated polydimethylsiloxane, styrene, benzoin isobutyl ether, and TPE was encapsulated in a urea‐formaldehyde shell. The photoluminescence of the healing agent in the microcapsules was measured that the blue emission intensity dramatically increased and the storage modulus also increased up to 105 Pa after the photocuring. These results suggested that this formulation might be useful as a self‐healing material and as an indicator of the self‐healing process due to the dramatic change in fluorescence during photocuring. To examine the ability of the healing agent to repair damage to a coating, a self‐healing coating containing embedded microcapsules was scribed with a razor. As the healing process proceeded, blue light fluorescence emission was observed at the scribed regions. This observation suggested that self‐healing could be monitored using the AIE fluorescence.

  相似文献   


11.
Two‐dimensional (2D) palladium nanocube array is achieved on plasma‐etched block copolymer templates, while the well‐aligned nanocubes remain active. Anisotropic nanocubes are site‐selectively assembled on various nanopatterns by capillary force. The nanocube array is proved to be easily tunable, and the dimensional commensurability plays a key role in the configurations of the nanocube assemblies. Not only catalytic nanocube array under confinement but also template for the growth of nanoscale zinc oxide (ZnO) nanorods is exemplified as the potential application of the nanoarray.

  相似文献   


12.
Polysaccharides are abundant in nature, renewable, nontoxic, and intrinsically biodegradable. They possess a high level of functional groups including hydroxyl, amino, and carboxylic acid groups. These functional groups can be utilized for further modification of polysaccharides with small molecules, polymers, and crosslinkers; the modified polysaccharides have been used as effective building blocks in fabricating novel biomaterials for various biomedical applications such as drug delivery carriers, cell‐encapsulating biomaterials, and tissue engineering scaffolds. This review describes recent strategies to modify polysaccharides for the development of polysaccharide‐based biomaterials; typically self‐assembled micelles, crosslinked microgels/nanogels, three‐dimensional hydrogels, and fibrous meshes. In addition, the outlook is briefly discussed on the important aspects for the current and future development of polysaccharide‐based biomaterials, particularly tumor‐targeting intracellular drug delivery nanocarriers.

  相似文献   


13.
A self‐healing hydrogel is prepared by crosslinking acrylamide with a host–guest macro‐crosslinker assembled from poly(β‐cyclodextrin) nanogel and azobenzeneacrylamide. The photoisomerizable azobenzene moiety can change its binding affinity with β‐cyclodextrin, therefore the crosslinking density and rheology property of the hydrogel can be tuned with light stimulus. The hydrogel can repair its wound autonomously through the dynamic host–guest interaction. In addition, the wounded hydrogel will lose its ability of self‐healing when exposed to ultraviolet light, and the self‐healing behavior can be recovered upon the irradiation of visible light. The utilizing of host–guest macro‐crosslinking approach manifests the as‐prepared hydrogel reversible and light‐switchable self‐healing property, which would broaden the potential applications of self‐healing polymers.

  相似文献   


14.
Diselenide‐containing polymers are facilely synthesized from polymers prepared by atom transfer radical polymerization (ATRP). Benefiting from the ATRP technology, this protocol provides a flexible route for controlling the polymer structure, which allows for a great variety of architectures of selenium‐containing polymer materials for applications in various fields. The oxidative and reductive responsive behavior of the obtained diselenide‐containing polymers is also investigated.

  相似文献   


15.
Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well‐soluble salt triethyloctylammonium chloride (Et3OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved.

  相似文献   


16.
Here, a novel method is demonstrated for the preparation of three‐arm branched microporous organic nanotube networks (TAB‐MONNs) based on molecular templating of three‐arm branched core–shell bottlebrush copolymers and Friedel–Crafts alkylation reaction. The unique three‐arm branched bottlebrush copolymers are synthesized by a combination of atom transfer radical polymerization, reversible addition‐fragmentation chain transfer polymerization, and ring‐opening polymerization techniques. In this approach, the length and diameter of branched tube units can be well‐controlled by rational molecular design. Moreover, the as‐prepared TAB‐MONNs possess a high surface area and exhibit a superior adsorption capacity for Rhodamine 6G (R6G) and p‐cresol.

  相似文献   


17.
Enzymatic catalysis and control over macromolecular architectures from reversible addition‐fragmentation chain transfer polymerization (RAFT) are combined to give a new method of making polymers. Horseradish peroxidase (HRP) is used to catalytically generate radicals using hydrogen peroxide and acetylacetone as a mediator. RAFT is used to control the polymer structure. HRP catalyzed RAFT polymerization gives acrylate and acrylamide polymers with relatively narrow molecular weight distributions. The polymerization is rapid, typically exceeding 90% monomer conversion in 30 min. Complex macromolecular architectures including a block copolymer and a protein‐polymer conjugate are synthesized using HRP to catalytically initiate RAFT polymerization.

  相似文献   


18.
The novel hyperbranched poly(methyl acrylate)‐block‐poly(acrylic acid)s (HBPMA‐b‐PAAs) are successfully synthesized via single‐electron transfer‐living radical polymerization (SET‐LRP), followed with hydrolysis reaction. The copolymer solution could spontaneously form unimolecular micelles composed of the hydrophobic core (PMA) and the hydrophilic shell (PAA) in water. Results show that the size of spherical particles increases from 8.18 to 19.18 nm with increased pH from 3.0 to 12.0. Most interestingly, the unique regular quadrangular prisms with the large microstructure (5.70 μm in length, and 0.47 μm in width) are observed by the self‐assembly of unimolecular micelles when pH value is below 2. Such self‐assembly behavior of HBPMA‐b‐PAA in solution is significantly influenced by the pH cycle times and concentration, which show that increased polymer concentration favors aggregate growth.

  相似文献   


19.
The protection of primary amines available in proteins holds great potential to introduce a plethora of diverse functionalities along the protein backbone (e.g., via its carboxylic acid or alcohol moieties) while circumventing the crosslinking issue using conventional approaches. This paper reports on a straightforward and efficient proof‐of‐concept including the chemoselective N‐tert‐butyloxycarbonylation of the primary amines in the protein gelatin (gel‐NH‐BOC), followed by introducing crosslinkable methacrylamide moieties. The reaction is performed successfully under relatively mild conditions (50 °C). Following selective protein functionalization, the deprotection is realized by adding a catalytic amount of an aqueous hydrogen chloride solution. The present communication illustrates the occurrence of a straightforward and selective deprotection procedure, which is typically required to circumvent the occurrence of acidic hydrolysis of the protein backbone. The results hold promise for a large range of biomedical applications in which the presence of primary amines is essential for preserving the biological activity.

  相似文献   


20.
Temperature‐triggered switchable nanofibrous membranes are successfully fabricated from a mixture of cellulose acetate (CA) and poly(N‐isopropylacrylamide) (PNIPAM) by employing a single‐step direct electrospinning process. These hybrid CA‐PNIPAM membranes demonstrate the ability to switch between two wetting states viz. superhydrophilic to highly hydrophobic states upon increasing the temperature. At room temperature (23 °C) CA‐PNIPAM nanofibrous membranes exhibit superhydrophilicity, while at elevated temperature (40 °C) the membranes demonstrate hydrophobicity with a static water contact angle greater than 130°. Furthermore, the results here demonstrate that the degree of hydrophobicity of the membranes can be controlled by adjusting the ratio of PNIPAM in the CA‐PNIPAM mixture.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号