首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
铁蛋白在修饰金电极上的直接电化学研究   总被引:2,自引:0,他引:2  
于萍  齐斌  崔小强  杨帆  黎拒难  杨秀荣 《分析化学》2005,33(9):1239-1242
利用巯基丙酸单分子层修饰金电极,获得了铁蛋白的直接电化学,用SPR表征了电极组装过程,循环伏安法研究了这一电子转移过程。比较了静电吸附与键合和固定2种修饰方法的不同,发现利用键合固定的方法并不能像细胞色素c那样得到稳定的电化学信号,这可能是由于经过多圈扫描以后,铁蛋白的构象发生了变化。一个电位调制的关于铁的释放与获取机理被进一步证实。  相似文献   

2.
A single‐wall carbon nanotube functionalized by carboxylic groups (SWNT‐CA) was found to be adsorbed on an indium tin oxide (ITO) electrode by chemical interaction between carboxylic groups and the ITO surface. The adsorption experiments indicated that the narrow pH conditions (around pH 3.0) exist for its adsorption which is restricted by preparation of stable fluid dispersion (favorable at higher pH) and by the chemical interaction (favorable at lower pH). Atomic force microscopic (AFM) measurements suggest that fragmented SWNT‐CA are adsorbed, primarily lying on the surface. Electrochemical impedance analysis indicated that an electrochemical double layer capacitance of the SWNT‐CA/ITO electrode is considerably higher than that for the ITO electrode, suggesting that the interfacial area between the electrode surface and the electrolyte solution is enlarged by the SWNT‐CA layer. Pt particles were deposited as a catalyst on the bare ITO and SWNT‐CA‐coated ITO (SWNT‐CA/ITO) electrodes to give respective Pt‐modified electrodes (denoted as a Pt/ITO electrode and a Pt/SWNT‐CA/ITO electrode, respectively). The cathodic current for the Pt/SWNT‐CA/ITO electrode was 1.7 times higher than that for the Pt/ITO electrode at 0.0 V, showing that the Pt/SWNT‐CA/ITO electrode works more efficiently for O2 reduction at 0.0 V due to the SWNT‐CA layer. The enhancement by the SWNT‐CA layer is also effective for electrocatalytic proton reduction. It could be ascribable to the enlarged interfacial area between the electrode surface and the electrolyte solution.  相似文献   

3.
Ferrocene was covalently bonded to a layer of adsorbed single‐walled carbon nanotubes on a glassy carbon electrode surface using electrochemical grafting and click chemistry. Grafting of the 4‐azidobenzenediazonium salt onto the surface was accomplished by electrochemical reduction. The surface‐bound azide groups, with the use of a copper(I) catalyst, were reacted with ethynylferrocene to form covalent 1,2,3‐triazole bonds by click chemistry. This layer by layer construction of the electrode surface results in stable electrodes by combining good electrical conductivity and increased surface area of the nanotubes with the versatility of the Sharpless click reaction.  相似文献   

4.
Ferritin adsorbs on gold electrodes modified with a layer of 8-mercaptooctanoic acid. Cyclic voltammetry indicates the reduction of the ferritin layer at negative potentials followed by an anodic process in the return scan. However, a second cycle reveals that the latter signal is the anodic branch of a new electrochemical couple rather than the anodic branch of adsorbed ferritin. Control experiments including stirring the scan solution, electrochemical induction of iron release, and varying the scan rate strongly support the hypothesis that a dissolved iron species is released when ferritin is reduced, but its oxidized form adsorbs onto the SAM-modified electrode surface.  相似文献   

5.
《Chemphyschem》2003,4(7):714-724
Cytochrome c (Cyt‐c) adsorbed in the electrical double layer of the Ag electrode/electrolyte interface has been studied by stationary and time‐resolved surface‐enhanced resonance Raman spectroscopy to analyse the effect of strong electric fields on structure and reaction equilibria and dynamics of the protein. In the potential range between +0.1 and ?0.55 V (versus saturated calomel electrode), the adsorbed Cyt‐c forms a potential‐dependent reversible equilibrium between the native state B1 and a conformational state B2. The redox potentials of the bis‐histidine‐coordinated six‐coordinated low‐spin and five‐coordinated high‐spin substates of B2 were determined to be ?0.425 and ?0.385 V, respectively, whereas the additional six‐coordinated aquo‐histidine‐coordinated high‐spin substate was found to be redox‐inactive. The redox potential for the conformational state B1 was found to be the same as in solution in agreement with the structural identity of the adsorbed B1 and the native Cyt‐c. For all three redox‐active species, the formal heterogeneous electron transfer rate constants are small and of the same order of magnitude (3–13 s?1), which implies that the rate‐limiting step is largely independent of the redox‐site structure. These findings, as well as the slow and potential‐dependent transitions between the various conformational (sub‐)states, can be rationalized in terms of an electric field‐induced increase of the activation energy for proton‐transfer steps linked to protein structural reorganisation. Further increasing the electric field strength by shifting the electrode potential above +0.1 V leads to irreversible structural changes that are attributed to an unfolding of the polypeptide chain.  相似文献   

6.
An experimental investigation of quasireversible maximum (QRM) of azobenzene on mercury electrode by two methods, i.e., traditional square‐wave voltammetry (SWV) and fast Fourier transformed square‐wave voltammetry (FT‐SWV), was presented, and the influence factors on QRM of FT‐SWV were discussed. The results show that the rate constants derived from FT‐SWV agree with that of derived from traditional SWV with acceptable differences, showing a sound verification that the rate constants derived from FT‐SWV were reliable. In addition, some theoretical predictions on FT‐SWV were experimentally confirmed through the characterization of strongly adsorbed azobenzene on mercury film electrode. As a result, FT‐SWV is further proved to be a powerful technique in kinetic studies of the surface adsorbed processes.  相似文献   

7.
A single wall carbon nanotubes (SWNTs)/graphene/ferritin/GOx layer on a glassy carbon electrode (GCE) acting as a biofuel cell anode was fabricated using a SWNTs/graphene/ferritin composite as an electron transfer mediator from the enzyme to the electrode. In the presence of glucose, the SWNTs/graphene/ferritin/GOx composite showed a higher current response than SWNTs/graphene/GOx composite and the electrocatalytic oxidation of glucose on the anode increased linearly with increasing concentration of glucose. The highly distributed SWNTs/graphene/ferritin composite acts as a platform for enzyme immobilization resulted in an enhanced electrocatalytic activity towards glucose. The SWNTs/graphene/ferritin composite showed an enhanced electron transfer from enzyme to the electrode; therefore, SWNTs/graphene/ferritin/GOx composite can be used as an anode in biofuel cells.  相似文献   

8.
《Electroanalysis》2005,17(22):2026-2031
In this work, electrochemical behaviors of 2,5,8‐trioxa‐16,20‐diazatricyclo[20.4.0.09,14]‐hexacosa‐9,11,13,15,20,22,24,26‐octaene (TPO) was investigated and mechanistic study was achieved in 0.1 M tetrabutylammonium tetrafluoroborate (TBATFB) in acetonitrile on glassy carbon (GC) working electrode by cyclic voltammetry, chronoamperometry and chronocoulometry. It was estimated by ultra microelectrode (UME) that this molecule is reduced by four‐electron transfer. The reduction product adsorbed on the electrode surface, characterized by Raman spectroscopy, is a dimer. It was determined by using cyclic voltammetry that TPO is electroreduced by EC mechanism. Using digital simulation studies, EC mechanism was also indicated and the standard rate constant of the reduction step was calculated as well as the rate constants of the homogenous reaction.  相似文献   

9.
Dilute silica sol‐gel was simply dropped on the surface of a basal plane graphite electrode (BPGE) to form a silica sol‐gel film modified electrode. Direct electrochemical response of cytochrome c (Cyt c) on the modified electrode was observed by cyclic voltammetry (CV). The results suggested that Cyt c could be tightly adsorbed on the surface of the silica sol‐gel film modified electrode. A couple of well‐defined and nearly reversible redox peaks can be observed in a phosphate buffer solution (pH 7.0), which anodic and cathodic peak potentials were at ?0.243 and ?0.306 V (vs. Ag/AgCl), respectively. Cyt c adsorbed on the surface of silica sol‐gel film shows a remarkable electrocatalytic activity for the reduction of oxygen. Based on these, a third‐generation biosensor could be constructed to detect the concentration of oxygen in aqueous solution.  相似文献   

10.
Sequential single‐electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir‐Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film (a‐Si:H) is reported. Quantized double‐layer charging of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the excess of negative/positive charged defect states in the a‐Si:H layer. The particular charge states in a‐Si:H are created by the simultaneous application of a suitable bias voltage and illumination before the measurement.  相似文献   

11.
Various sensor‐based immunoassay methods have been extensively developed for the detection of cancer antigen 15‐3 (CA 15‐3), but most often exhibit low detection signals and low detection sensitivity, and are unsuitable for routine use. The aim of this work is to develop a simple and sensitive electrochemical immunoassay for CA 15‐3 in human serum by using nanogold and DNA‐modified immunosensors. Prussian blue (PB), as a good mediator, was initially electrodeposited on a gold electrode surface, then double‐layer nanogold particles and double‐strand DNA (dsDNA) with the sandwich‐type architecture were constructed on the PB‐modified surface in turn, and then anti‐CA 15‐3 antibodies were adsorbed onto the surface of nanogold particles. The double‐layer nanogold particles provided a good microenvironment for the immobilization of biomolecules. The presence of dsDNA enhanced the surface coverage of protein, and improved the sensitivity of the immunosensor. The performance and factors influencing the performance of the immunosensor were evaluated. Under optimal conditions, the proposed immunosensor exhibited a wide linear range from 1.0 to 240 ng/mL with a relatively low detection limit of 0.6 ng/mL (S/N=3) towards CA 15‐3. The stability, reproducibility and precision of the as‐prepared immunosensor were acceptable. 57 serum specimens were assayed by the developed immunosensor and standard enzyme‐linked immunosorbent assay (ELISA), respectively, and the results obtained were almost consistent. More importantly, the proposed methodology could be further developed for the immobilization of other proteins and biocompounds.  相似文献   

12.
《Electroanalysis》2004,16(9):757-764
Colloidal Au particles have been deposited on the gold electrode through layer‐by‐layer self‐assembly using cysteamine as cross‐linkers. Self‐assembly of colloidal Au on the gold electrode resulted in an easier attachment of antibody, larger electrode surface and ideal electrode behavior. The redox reactions of [Fe(CN)6]4?/[Fe(CN)6]3? on the gold surface were blocked due to antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.0 with various concentrations of antigen at 37 °C for 30 min. Further, an amplification strategy to use biotin conjugated antibody was introduced for improving the sensitivity of impedance measurements. Thus, the sensor based on this immobilization method exhibits a large linear dynamic range, from 5–400 μg/L for detection of Human IgG. The detection limit is about 0.5 μg/L.  相似文献   

13.
A DNA layer adsorbed at glassy carbon electrodes (GCE) was characterized by ellipsometry, atomic force microscopy (AFM) and scanning electron microscopy (SEM). The presence of the adsorbed DNA layer on polished glassy carbon electrodes was assessed indirectly by ellipsometric measurements. Ellipsometry was also useful to evaluate the influence of the oxide layer formed on glassy carbon electrodes, either spontaneously or after electrochemical pretreatments, on the DNA adsorption and further electrooxidation process. SEM and AFM images of the electrode surface covered by a thick layer of DNA reveal a nonuniform distribution, leaving channels and islands of the biological material.  相似文献   

14.
Based on hemin‐MWCNTs nanocomposite and hemin‐catalyzed luminol‐H2O2 reaction, a sensitive electrogenerated chemiluminescence (ECL) cholesterol biosensor was proposed in this paper. Firstly, hemin‐MWCNTs was prepared via π–π stacking and modified on the surface of GCE. Subsequently, cholesterol oxidase (ChOx) was adsorbed on the modified electrode to achieve a cholesterol biosensor. Hemin‐MWCNTs nanocomposite provided the electrode with a large surface area to load ChOx, and endowed the nanostructured interface on the electrode surface to enhance the performance of biosensor. The biosensor responded to cholesterol in the linear range from 0.3 µM to 1.2 mM with a detection limit of 0.1 µM (S/N=3).  相似文献   

15.
The adsorption of Immunoglobulin G on a titanium dioxide (TiO(2)) electrode surface was investigated using (125)I radiolabeling and electrochemical impedance spectroscopy (EIS). (125)I radiolabeling was used to determine the extent of protein adsorption, while EIS was used to ascertain the effect of the adsorbed protein layer on the electrode double layer capacitance and electron transfer between the TiO(2) electrode and the electrolyte. The adsorbed amounts of Ig.G agreed well with previous results and showed approximately monolayer coverage. The amount of adsorbed protein increased when a positive potential was applied to the electrode, while the application of a negative potential resulted in a decrease. Exposure to solutions of Ig.G resulted in a decrease of the double layer capacitance (C) and an increase in the charge-transfer resistance (R(2)) at the electrode solution interface. As more Ig.G adsorbed onto the electrode surface, the extent of C and R(2) variation increased. These capacitance and charge-transfer resistance variations were attributed to the formation of a proteinaceous layer on the electrode surface during exposure.  相似文献   

16.
《Electroanalysis》2005,17(14):1309-1316
The detection limit (about 0.017 μg mL?1) for voltammetric determination of iodide (peak at +0.87 V vs. Ag/AgCl at pH 2) at a glutaraldehyde‐cross‐linked poly‐L ‐lysine modified glassy carbon electrode involving oxidation to iodine was found to be several orders of magnitude lower than that for the voltammetric determination on a bare glassy carbon electrode. This method was applied successfully to the determination of iodide in two medicinal formulations. Idoxuridine was determined indirectly at the same electrode by accumulating it first at ?0.8 V vs. Ag/AgCl. At this potential the C? I bond in the adsorbed idoxuridine is reduced giving iodide, which is then determined at the modified electrode. The method was successfully applied to the determination of idoxuridine in a urine sample.  相似文献   

17.
Stoodley R  Bizzotto D 《The Analyst》2003,128(6):552-561
Characterization of the potential-induced changes of a lipid-coated Hg-0.1 M KCl interface through electrochemical techniques and newly developed in situ fluorescence microscopy is described. Fluorescence of a fluorophore-containing dioleoyl phosphatidylcholine (DOPC) layer deposited from the gas-solution interface was observed to be dependent upon the potential of the Hg surface. The largest changes occurred for potentials where the lipid layer was desorbed: the lipid moved away from the electrode surface, reducing the efficiency of metal-mediated quenching of the excited state resulting in an increase in fluorescence. Electric potential-induced changes in the morphology of the adsorbed or desorbed DOPC lipid monolayer were observed optically for the first time using this technique. The observed potential-dependent fluorescence was compared to previous studies on an octadecanol-coated Au(111) electrode. Fluorescence microscopy was also used to characterize the fusion of DOPC liposomes with a previously adsorbed DOPC layer. Large changes in fluorescence were observed for the DOPC layer after fusion with liposomes. The fusion was accomplished via potential-created defects in the adsorbed DOPC monolayer through which the liposomes interact. The integration of the liposomes into the adsorbed monolayer results in a hybrid layer in which some lipid exists further from the electrode surface, resulting in a large increase in fluorescence. Possibilities for the creation of a biomimetic adsorbed hybrid lipid layer on Hg are also discussed.  相似文献   

18.
The formation of an inclusion complex between 4‐aminobiphenyl (4‐AB) and β‐cyclodextrin molecules (β‐CD), allows the use of thiolated β‐CDs as chemi‐adsorbed material on a Au electrode as a self‐assembled submonolayer for the selective square wave voltammetric determination of 4‐AB. The submonolayer was characterized by reductive desorption and an association constant of 1.2×104 L/mol was obtained. The optimization of variables yielded a linear dependence of ip/4‐AB concentration in the range of 10?5 to 10?4 mol/L. The selectivity of the method was evaluated in the presence of other aromatic amines obtaining better results with the modified electrode. This methodology was applied to the voltammetric determination of 4‐AB in wastewater samples.  相似文献   

19.
《Electroanalysis》2006,18(9):918-927
Uric acid (UA) sensor based on molecularly imprinted polymer‐modified hanging mercury drop electrode was developed for sensitive and selective analysis in aqueous and blood serum samples. The uric acid‐imprinted polymer was prepared from melamine and chloranil and coated directly onto the surface of a hanging mercury drop electrode, under charge‐transfer interactions at +0.4 V (vs. Ag/AgCl), in model 303A electrode system connected with a polarographic analyzer/stripping voltammeter (PAR model 264A). The binding event of uric acid was detected in the imprinted polymer layer through differential pulse, cathodic stripping voltammetry (DPCSV) at optimized operational conditions [accumulation potential +0.4 V (vs. Ag/AgCl), accumulation time 120 s, pH 7.0, scan rate 10 mV s?1, pulse amplitude 25 mV]. The limit of detection for UA was found to be 0.024 μg mL?1 (RSD=0.64%, S/N=3). Under the optimized operational conditions, the sensor was able to differentiate between uric acid and other closely structural‐related compounds and interfering substances. Ascorbic acid (AA), a major interferent in UA estimation, was not adsorbed on the surface of sensor electrode. The present sensor is, therefore, UA‐selective at all concentrations of AA present in human blood serum samples. The précised and accurate quantification of UA have been made in the dilute as well as concentrated regions varying within limits 0.1–4.0 and 9.8–137.0 μg mL?1, respectively.  相似文献   

20.
An electrochemical DNA sensing film was constructed based on the multilayers comprising of poly‐L ‐lysine (pLys) and Au‐carbon nanotube (Au‐CNT) hybrid. A precursor film of mercaptopropionic acid (MPA) was firstly self‐assembled on the Au electrode surface. pLys and Au‐CNT hybrid layer‐by‐layer assembly films were fabricated by alternately immersing the MPA‐modified electrode into the pLys solution and Au‐CNT hybrid solution. Cyclic voltammetry was used to monitor the consecutive growth of the multilayer films by utilizing [Fe(CN)6]3?/4? and [Co(phen)3]3+/2+ as the redox indicators. The outer layer of the multilayer film was the positively charged pLys, on which the DNA probe was easily linked due to the strong electrostatic affinity. The hybridization detection of DNA was accomplished by using methylene blue (MB) as the indicator, which possesses different affinities to dsDNA and ssDNA. Differential pulse voltammetry was employed to record the signal response of MB and determine the amount of the target DNA sequence. The established biosensor has high sensitivity, a relatively wide linear range from 1.0×10?10 mol/L to 1.0×10?6 mol/L and the ability to discriminate the fully complementary target DNA from single or double base‐mismatched DNA. The sequence‐specific DNA related to phosphinothricin acetyltransferase gene from the transgenically modified plants was successfully detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号