首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Electroanalysis》2005,17(22):2043-2051
The electrochemical behavior of L ‐cysteine studied at the surface of ferrocenecarboxylic acid modified carbon paste electrode (FCMCPE) in aqueous media using cyclic voltammetry and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00) in cyclic voltammetry, the oxidation of L ‐cysteine is occurs at a potential about 580 mV less positive than that an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and catalytic reaction rate constant, Kh were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of L ‐cysteine showed a linear dependent on the L ‐cysteine concentration and linear calibration curves were obtained in the ranges of 10?5 M–10?3 M and 4.1×10?8 M–3.7×10?5 M of L ‐cysteine concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (2δ) were determined as 2.4×10?6 M and 2.5×10?8 M by CV and DPV methods. This method was also examined for determination of L ‐cysteine in some samples, such as Soya protein powder, serum of human blood by using recovery and standard addition methods.  相似文献   

2.
《Electroanalysis》2006,18(17):1722-1726
The electrochemical properties of L ‐cysteic acid studied at the surface of p‐bromanil (tetrabromo‐p‐benzoquinone) modified carbon paste electrode (BMCPE) in aqueous media by cyclic voltammetry (CV) and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00) in cyclic voltammetry, the oxidation of L ‐cysteic acid at the surface of BMCPE occurs at a half‐wave potential of p‐bromanil redox system (e.g., 100 mV vs. Ag|AgCl|KClsat), whereas, L ‐cysteic acid was electroinactive in the testing potential ranges at the surface of bare carbon paste electrode. The apparent diffusion coefficient of spiked p‐bromanil in paraffin oil was also determined by using the Cottrell equation. The electrocatalytic oxidation peak current of L ‐cysteic acid exhibits a linear dependency to its concentration in the ranges of 8.00×10?6 M–6.00×10?3 M and 5.2×10?7 M–1.0×10?5 M using CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (2σ) were determined as 5.00×10?6 M and 4.00×10?7 M by CV and DPV methods. This method was used as a new, selective, rapid, simple, precise and suitable voltammetric method for determination of L ‐cysteic acid in serum of patient's blood with migraine disease.  相似文献   

3.
The electrochemical behavior of D ‐penicillamine (D ‐PA) studied at the surface of ferrocene carboxylic acid modified carbon paste electrode (FCAMCPE) in aqueous media using cyclic voltammetry and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00), the oxidation of D ‐PA at surface of such an electrode is occurred about 420 mV less positive than that an unmodified carbon paste electrode (CPE). The catalytic oxidation peak current was linearly dependent on the D ‐PA concentration and a linear calibration curve was obtained in the ranges 7.5×10?5 M – 1.0×10?3 M and 6.5×10?6 M?1.0×10?4 M of D ‐PA with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (3σ) were determined as 6.04×10?5 M and 6.15×10?6 M. This method was also used for the determination of D ‐PA in pharmaceutical preparation (capsules) by standard addition method.  相似文献   

4.
The electrochemical properties of hydrazine studied at the surface of a carbon paste electrode spiked with p‐bromanil (tetrabromo‐p‐benzoquinone) using cyclic voltammetry (CV), double potential‐step chronoamperometry and differential pulse voltammetry (DPV) in aqueous media. The results show this quinone derivative modified carbon paste electrode, can catalyze the hydrazine oxidation in an aqueous buffered solution. It has been found that under the optimum conditions (pH 10.00), the oxidation of hydrazine at the surface of this carbon paste modified electrode occurs at a potential of about 550 mV less positive than that of a bar carbon paste electrode. The electrocatalytic oxidation peak current of hydrazine showed a linear dependent on the hydrazine concentrations and linear analytical curves were obtained in the ranges of 6.00×10?5 M–8.00×10?3 M and 7.00×10?6 M–8.00×10?4 M of hydrazine concentration with CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 3.6×10?5 M and 5.2×10?6 M by CV and DPV methods. This method was also used for the determination of hydrazine in the real sample (waste water of the Mazandaran wood and paper factory) by standard addition method.  相似文献   

5.
A carbon paste electrode spiked with 1‐[4‐ferrocenyl ethynyl) phenyl]‐1‐ethanone (4FEPE) was constructed by incorporation of 4FEPE in graphite powder‐paraffin oil matrix. It has been shown by direct current cyclic voltammetry and double step chronoamperometry that this electrode can catalyze the oxidation of tryptophan (Trp) in aqueous buffered solution. It has been found that under optimum condition (pH 7.00), the oxidation of Trp at the surface of such an electrode occurs at a potential about 200 mV less positive than at an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and rate constant for the chemical reaction between Trp and redox sites in 4FEPE modified carbon paste electrode (4FEPEMCPE) were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of Trp showed a linear dependent on the Trp concentrations and linear calibration curves were obtained in the ranges of 6.00×10?6 M–3.35×10?3 M and 8.50×10?7 M–6.34×10?5 M of Trp concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 1.80×10?6 M and 5.60×10?7 M by CV and DPV methods. This method was also examined as a selective, simple and precise new method for voltammetric determination of tryptophan in real sample.  相似文献   

6.
《Electroanalysis》2006,18(12):1193-1201
A chemically modified carbon paste electrode with 2,7‐bis(ferrocenyl ethyl)fluoren‐9‐one (2,7‐BFEFMCPE) was employed to study the electrocatalytic oxidation of ascorbic acid in aqueous solution using cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The diffusion coefficient (D=1.89×10?5 cm2 s?1), and the kinetic parameter such as the electron transfer coefficient, α (=0.42) of ascorbic acid oxidation at the surface of 2,7‐BFEFMCPE was determined using electrochemical approaches. It has been found that under an optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such an electrode occurs at a potential about 300 mV less positive than that of an unmodified carbon paste electrode. The catalytic oxidation peak currents show a linear dependence on the ascorbic acid concentration and linear analytical curves were obtained in the ranges of 8.0×10?5 M–2.0×10?3 M and 3.1×10?5 M–3.3×10?3 M of ascorbic acid with correlation coefficients of 0.9980 and 0.9976 in cyclic voltammetry and differential pulse voltammetry, respectively. The detection limits (2δ) were determined to be 2.9×10?5 M and 9.0×10?6 M with cyclic voltammetry and differential pulse voltammetry, respectively. This method was also examined for determination of ascorbic acid in pharmaceutical preparations.  相似文献   

7.
A new sensor, gold‐6‐amino‐2‐mercaptobenzothiazole (6A2MBT), was fabricated via a self‐assembly procedure. Electrochemical properties of the monolayer were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The modified electrode showed excellent antifouling property against the oxidation products of DA, allowed us to construct a dynamic calibration curve with two linear parts, 1.00×10?6 to 3.72×10?4 and 3.72×10?4 to 6.42×10?4 M DA, with correlation coefficients of 0.997 and 0.992 and a detection limit of 1.57×10?7 M DA by using differential pulse voltammetry (DPV), respectively. Finally, the performance of the Au‐6A2MBT modified electrode was successfully tested for electrochemical detection of DA in a pharmaceutical sample.  相似文献   

8.
In the present work, an electrochemical sensor was developed for simple and sensitive determination of tryptophan (Trp) using multi‐walled carbon nanotubes modified sol‐gel electrode (MWCNTs/SGE). The electrocatalytic oxidation of tryptophan was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the oxidation peak current of Trp at the MWCNTs/SGE was greatly improved compared with that of the bare SGE. Furthermore, at the MWCNTs/SGE, the anodic peak potential of Trp is shifted about 220 mV to more negative value indicated that modified electrode has better electrocatalytic activity for electro‐oxidation of Trp. The anodic peak currents increased linearly with the concentration of tryptophan in the range of 0.2 × 10?6 to 15 × 10?6 M with a detection limit of 0.139 × 10?6 M (at an S/N = 3).  相似文献   

9.
A 1‐[2‐hydroxynaphthylazo]‐6‐nitro‐2‐naphthol‐4‐sulfonate/ CuO nanoparticles modified carbon paste electrode (HNNSCCPE) was constructed and the electro‐oxidation of isoprenaline at the surface of the modified electrode was studied using cyclic voltammetry (CV), chronoamperometry (CHA), and square wave voltammetry (SWV). Under the optimized conditions, the square wave voltammetric peak current of isoprenaline increased linearly with isoprenaline concentrations in the range of 1.0×10?7 to 7.0×10?4 M and detection limit of 5.0×10?8 M was obtained for isoprenaline. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of isoprenaline, acetaminophen and N‐acetyl‐L‐cysteine which makes it suitable for the detection of isoprenaline in the presence of acetaminophen and N‐acetyl‐L‐cysteine in real samples.  相似文献   

10.
Electrochemical reduction and determination of montelukast (MKS) was studied in methanol – 0.1 M HCl solution (1 : 1, v/v) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at chitosan modified carbon paste electrode. The linear range was 1.70×10?7–1.83×10?5 M for DPV analysis. Limit of detection (LOD) and limit of quantification (LOQ) were 5.32×10?8 M and 1.61×10?7 M, respectively. The developed method was successfully applied to the determination of MKS in tablets and spiked human plasma. The results obtained were in good agreement with those obtained using a reported spectrofluorimetric technique.  相似文献   

11.
《Electroanalysis》2003,15(21):1693-1698
The voltammetric behaviors of uric acid (UA) and L ‐ascorbic acid (L ‐AA) were studied at well‐aligned carbon nanotube electrode. Compared to glassy carbon, carbon nanotube electrode catalyzes oxidation of UA and L ‐AA, reducing the overpotentials by about 0.028 V and 0.416 V, respectively. Based on its differential catalytic function toward the oxidation of UA and L ‐AA, the carbon nanotube electrode resolved the overlapping voltammetric response of UA and L ‐AA into two well‐defined voltammetric peaks in applying both cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which can be used for a selective determination of UA in the presence of L ‐AA. The peak current obtained from DPV was linearly dependent on the UA concentration in the range of 0.2 μM to 80 μM with a correlation coefficient of 0.997. The detection limit (3δ) for UA was found to be 0.1 μM. Finally, the carbon nanotube electrode was successfully demonstrated as a electrochemical sensor to the determination of UA in human urine samples by simple dilution without further pretreatment.  相似文献   

12.
Electrochemical behavior of remarkably low levels of Ribonucleic acid yeast (yRNA) is studied through differential pulse voltammetry (DPV), and kinetic parameters of the electrochemical reaction have also been calculated through square‐wave voltammetry (SWV), based on immobilization of yRNA on the surface of a CPB‐cellulose modified electrode. YRNA/ CPB‐cellulose/ITO conductive glass electrode is demonstrated by Infrared reflect (IR) and electrochemical impedance spectroscopy (EIS). The oxidation peak potential of yRNA shifts negatively with increasing pH. The peak currents decrease gradually in successive scans and no corresponding reduction peaks occur, indicating that oxidation process of yRNA is completely irreversible. Variables influencing DPV response of yRNA, such as pH, pulse amplitude and electrolyte concentration, are explored and optimized. Peak currents are proportional to the concentration of yRNA in the range of 0.1 μg mL?1–1.0 μg mL?1, and the linear regression coefficient equals 0.9923. The detection limit for yRNA is 1.0×10?10 g mL?1. Interferences of L ‐cysteine, L ‐alanine, Hemoglobin, Uridine 5′‐monophosphate, Guanosine 5′‐monophosphate, Adenosine 5′‐triphosphate and some metal ions (Co3+, Cr3+, Ni2+, Hg2+, Zn2+, etc) are negligible. The methods adopted here are more sensitive and selective than currently applied techniques and overcome the drawback of absorption spectroscopy arising from a strong interference due to other UV‐absorbing substances.  相似文献   

13.
The electrocatalytic oxidation of hydrazine at a carbon paste electrode spiked with acetylferrocene as a mediator was studied by cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. In contrast to other ferrocenic compounds, acetylferrocene exhibits a chemical irreversible behavior, but it can act as an effective mediator for electrocatalytic oxidation of hydrazine, too. The heterogeneous electron transfer rate constant between acetylferrocene and the electrode substrate (carbon paste) and the diffusion coefficient of spiked acetylferrocene in silicon oil were estimated to be about 3.45×10?4 cm s?1 and 4.45×10?9 cm2 s?1, respectively. It has been found that under the optimum conditions (pH 7.5) the oxidation of hydrazine occurs at a potential of about 228 mV less positive than that of an unmodified carbon paste electrode. The catalytic oxidation peak current of hydrazine was linearly dependent on its concentration and the obtained linear range was 3.09×10?5 M–1.03×10?3 M. The detection limit (2σ) has been determined as 2.7×10?5 M by cyclic voltammetry. Also, the peak current was increased linearly with the concentration of hydrazine in the range of 1×10?5 M–1×10?3 M by differential pulse voltammetry with a detection limit of 1×10?5 M. This catalytic oxidation of hydrazine has been applied as a selective, simple, and precise new method for the determination of hydrazine in water samples.  相似文献   

14.
In this paper a molecular wire modified carbon paste electrode (MW‐CPE) was firstly prepared by mixing graphite powder with diphenylacetylene (DPA). Then a graphene (GR) and chitosan (CTS) composite film was further modified on the surface of MW‐CPE to receive the graphene functionalized electrode (CTS‐GR/MW‐CPE), which was used for the sensitive electrochemical detection of adenosine‐5′‐triphosphate (ATP). The CTS‐GR/MW‐CPE exhibited excellent electrochemical performance and the electrochemical behavior of ATP on the CTS‐GR/MW‐CPE was carefully studied by cyclic voltammetry with an irreversible oxidation peak appearing at 1.369 V (vs. SCE). The electrochemical parameters such as charge transfer coefficient (α) and electrode reaction standard rate constant (ks) were calculated with the results of 0.53 and 5.28×10?6 s?1, respectively. By using differential pulse voltammetry (DPV) as detection technique, the oxidation peak current showed good linear relationship with ATP concentration in the range from 1.0 nM to 700.0 µM with a detection limit of 0.342 nM (3σ). The common coexisting substances, such as uric acid, ascorbic acid and guanosine‐5′‐triphosphate (GTP), showed no interferences and the modified electrode was successfully applied to injection sample detection.  相似文献   

15.
A carbon‐coated iron nanoparticles (CIN, a new style fullerence related nanomaterial) modified glassy carbon electrode (CIN/GCE) has been developed for the determination of uric acid (UA). Electrochemical behaviors of UA on CIN/GCE were explored by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the voltammetric response of UA on CIN/GC was enhanced dramatically because of the strong accumulation effect of CIN and the large working area of the CIN/GC electrode. The parameters including the pH of supporting electrolyte, accumulation potential and time, that govern the analytical performance of UA have been studied and optimized. The DPV signal of UA on CIN/GCE increased linearly with its concentration in the range from 5.0×10?7 to 2.0×10?5 M, with a detection limit of 1.5×10?7 M (S/N=3). The CIN/GCE was used for the determination of UA in samples with satisfactory results. The proposed CIN/GCE electrochemical sensing platform holds great promise for simple, rapid, and accurate detection of UA.  相似文献   

16.
In this work, the modified carbon paste electrode (CPE) with an imidazole derivative 2‐(2,3 dihydroxy phenyl) 4‐methyl benzimidazole (DHPMB) and reduced graphene oxide (RGO) was used as an electrochemical sensor for electrocatalytic oxidation of N‐acetyl‐L‐cysteine (NAC). The electrocatalytic oxidation of N‐acetyl‐L‐cysteine on the modified electrode surface was then investigated, indicating a reduction in oxidative over voltage and an intensive increase in the current of analyte. The scan rate potential, the percentages of DHPMB and RGO, and the pH solution were optimized. Under the optimum conditions, some parameters such as the electron transfer coefficient (α) between electrode and modifier, and the electron transfer rate constant) ks) in a 0.1 M phosphate buffer solution (pH=7.0) were obtained by cyclic voltammetry method. The diffusion coefficient of species (D) 3.96×10?5 cm2 s?1 was calculated by chronoamperometeric technique and the Tafel plot was used to calculate α (0.46) for N‐ acetyl‐L‐cysteine. Also, by using differential pulse voltammetric (DPV) technique, two linear dynamic ranges of 2–18 µM and 18–1000 µM with the detection limit of 61.0 nM for N‐acetyl‐L‐cysteine (NAC) were achieved. In the co‐existence system of N‐acetyl‐L‐cysteine (NAC), uric acid (UA) and dopamine (DA), the linear response ranges for NAC, UA, and DA are 6.0–400.0 µM, 5.0–50.0 µM and 2.0–20.0 µM, respectively and the detection limits based on (C=3sb/m) are 0.067 µM, 0.246 µM and 0.136 µM, respectively. The obtained results indicated that DHPMB/RGO/CPE is applicable to separate NAC, uric acid (UA) and dopamine (DA) oxidative peaks, simultaneously. For analytic performance, the mentioned modified electrode was used for determination of NAC in the drug samples with acceptable results, and the simultaneous determination of NAC, UA and DA oxidative peaks was investigated in the serum solutions, too.  相似文献   

17.
The electrooxidation of D-penicillamine (D-PA) has been studied in the presence of potassium iodide in various buffered aqueous solutions (4.00 ≤ pH ≤ 9.00) at the surface of glassy carbon electrode using cyclic voltammetry, differential pulse voltammetry and chronoamperometry. It has been found that under optimum pH (pH 5.00) in cyclic voltammetry, the electrooxidation of D-PA in the presence of potassium iodide as a homogeneous mediator occurred at a potential about 220 mV less positive than that in absence of potassium iodide at the surface of glassy carbon electrode. The homogeneous electrocatalytic oxidation current wave of D-penicillamine was linearly dependent on the D-PA concentration and a linear calibration curve was obtained in the ranges 3.0 × 10−5−1.5 × 10−3 M and 9.0 × 10−6−1.2 × 10−4 M of D-PA with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, respectively. The detection limits (2σ) were determined as 3.0 × 10−5 and 3.5 × 10−6 M with CV and DPV, respectively. This method was also used for voltammetric determination of D-PA in pharmaceutical preparation by standard addition method.  相似文献   

18.
ABSTRACT

The rapid electrochemical determination of Aceclofenac (ACF) has been employed by cyclic voltammetry (CV), differential pulse voltammetry (DPV) using developed OH-functionalised multiwalled carbon nanotube carbon paste electrode (OH-MWCNT/CPE). Modified electrode was characterised by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX), X-ray diffraction spectroscopy (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The ACF exhibits two oxidation peaks at +0.4 V, +0.66 V and one reduction peak at +0.3 V. The active surface area of the bare carbon paste electrode (BCPE) and modified electrode have been characterised by using K3[Fe(CN)6] solution containing 0.1 M KCl. In DPV mode, variation of ACF gave the limit of detection (LOD = 3s/m) 0.246 μM over the concentration range 1.0 to 190.0 μM (R2 = 0.9994). The developed electrode has good stability, reproducibility and could be successfully validated for the detection of ACF in pharmaceutical samples and biological fluids.  相似文献   

19.
In this work a carbon paste electrode modified with multiwalled carbon nanotubes/β‐cyclodextrin (MWCNTs/β‐CD) was constructed and applied to the determination of nifedipine. The electrochemical behavior of nifedipine at this electrode was investigated using cyclic voltammetry and differential pulse voltammetry. Characterization of the modified electrode was conducted with electrochemical impedance spectroscopy and scanning electron microscopy. After adsorption of nifedipine on the MWCNTs/β‐CD paste electrode at 0.0 V for 6 min, a well defined reduction peak was produced in sodium hydroxide of 0.05 M. The calibration curve was linear from 7.0×10?8 to 1.5×10?5 M. The detection limit was obtained as 2.5×10?8 M. The results demonstrated that this electrochemical sensor has excellent sensitivity and selectivity. This sensor was applied for determination of nifedipine in drug dosage and blood serum with excellent recoveries.  相似文献   

20.
A reliable and simple electrochemical method has been proposed for the simultaneous determination of paracetamol (PAR) and p‐aminophenol (PAP) in pharmaceutical formulations. The oxidation and reduction peak potentials in cyclic voltammetry (CV) for PAR on carbon ionic liquid electrode (CILE) were occurred at 370 and 225 mV vs. Ag/AgCl, respectively at pH 7.0, while those for PAP on CILE appeared at 128 mV and 68 mV, respectively at the scan rate of 0.05 V s?1. In comparison to the conventional carbon paste electrode, the apparent reversibility and kinetics of the electrochemical reactions of PAR and PAP were significantly improved on CILE. In differential pulse voltammetric technique, the peak potentials for PAR and PAP appeared at 345 and 130 mV, respectively, with the peak separation of 215 mV, sufficient for their simultaneous determination in samples containing these two species. The proposed method was used for simultaneous determination of PAR and PAP in tablets. PAR and PAP can be determined in the ranges of 2.0×10?6–2.2×10?3 M and 3.0×10?7–1.0×10?3 M, with the detection limits of 5.0×10?7 and 1.0×10?7 M (calculated by 3σ), respectively. The relative standard deviations for the determination of PAR and PAP were less than 2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号