首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heterogenization of tris(pentafluorophenyl)borane [B(C6F5)3] on a silica support stabilized with chlorotriphenylmethane (CICPh3) and N,N‐dimethylaniline (HNMe2Ph) creates the following supported borane cocatalysts: [HNMe2Ph]+[B(C6F5)3‐SiO2]? and [CPh3]+[B(C6F5)3‐SiO2]?. These supported catalysts were reacted with Cp2ZrCl2 TIBA in situ to generate active metallocene species in the reactor. Triisobutylaluminum (TIBA) was a good coactivator for dichloro‐zirconocene, acting as the prealkylating agent to generate cationic zirconocene (Cp2ZrC4H9+). The catalytic performances were determined from the kinetics of ethylene‐consumption profiles that were independent of the time dedicated to the activation of the catalysts. The scanning electron microscopy‐energy dispersive X‐ray measurements showed that B(C6F5)3 dispersed uniformly on the silica support. Under our reaction conditions, the [CPh3]+[B(C6F5)3‐SiO2]? system had higher productivity and weight‐average molecular weight than the [HNMe2Ph]+[B(C6F5)3‐SiO2]? system. For the [CPh3]+[B(C6F5)3‐SiO2]? system, the productivity increased with the amount catalyst; however, the polydispersity index of polyethylene synthesized did not change. The final shape of polymer particles was a larger‐diameter version of the original support particle. The polymer particles synthesized with supported [CPh3]+[B(C6F5)3‐SiO2]? catalysts had larger diameters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3240–3248, 2002  相似文献   

2.
1H NMR method showed that in systems based on triisobutylaluminum (TIBA) and triphenylcyclopropenylium [Ph3C3]+[B(C6F5)4]–(CPB) or triphenylmethylium [Ph3C]+[B(C6F5)4]–(TB) perfluorophenylborates in a toluene–dichloromethane mixture the Friedel–Crafts process occurs with the formation of ditolylmethane (DTM) accompanied by the complete decomposition of TIBA to form isobutane. 19F NMR spectroscopy showed that the [B(C6F5)4]–anion decomposes in the systems to form B(C6F5)3 and HC6F5. The short-living [AlBu2 i]+ cation formed in the reaction of perfluorophenylborates with TIBA is assumed to be the species initiating the process. It has been shown that CPB is less reactive than TB. The addition of a stoichiometric amount of Ph2CCpFluHfMe2 exerts no effect on the process with the CPB-containing system but inhibits the reaction in the case of TB.  相似文献   

3.
The cationic zinc triple‐decker complex [Zn2Cp*3]+[BArF4]? (BArF4=B(3,5‐(CF3)2C6H3)4) exhibits catalytic activity in intra‐ and intermolecular hydroamination reactions in the absence of a cocatalyst. These hydroaminations presumably proceed through the activation of the C?C multiple bond of the alkene or alkyne by a highly electrophilic zinc species, which is formed upon elimination of the Cp* ligands. The reaction of [Zn2Cp*3]+[BArF4]? with phenylacetylene gives the hydrocarbonation product (Cp*)(Ph)CCH2, which might be formed via a similar reaction pathway. Additionally, several other structurally well‐defined cationic zinc organyls have been examined as precatalysts for intermolecular hydroamination reactions without the addition of a cocatalyst. These studies reveal that the highest activity is achieved in the absence of any donor ligands. The neutral complex [ZnCp2S2] (Cp2S=C5Me4(CH2)2SMe) shows a remarkably high catalytic activity in the presence of a Brønsted acid.  相似文献   

4.
This investigation studied the solution polymerization of ethylene in Isopar E in a semibatch reactor using CGC‐Ti as catalyst and methylalumoxane (MAO) and tris(pentaflourophenyl)borane [B(C6F5)3] as cocatalysts. The effects of cocatalyst type and amount on the chain microstructure were investigated. 13C NMR and gel permeation chromatography were used to determine the long‐chain branching (LCB) content and molecular weight distribution (MWD), respectively, of the samples. It was observed that higher concentrations of MAO increased the LCB content and decreased the molecular weight of the polymer. On the other hand, increasing the amount of B(C6F5)3 lowered the LCB content, increased the molecular weight, and broadened MWD significantly. We believe that this approach can be used as an efficient way to control the microstructure of polyolefins made with these catalytic systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3055–3061, 2004  相似文献   

5.
The Cs‐symmetry hafnium metallocene [(p‐Et3Si)C6H4]2C(2,7‐di‐tert‐BuFlu)(C5H4)Hf(CH3)2 and tetrakis(pentafluorophenyl) borate dimethylanilinium salt ([B(C6F5)4]?[Me2NHPh]+) were used as the catalytic system for the polymerization of higher α‐olefins (from hexene‐1 to hexadecene‐1) in toluene at 0 °C. The evolution of the polymerization was studied regarding the variation of the molecular weight, molecular weight distribution and yield with time. The effect of the monomer structure on the polymerization kinetics was established. The role of trioctylaluminum in accelerating the polymerization was investigated. 13C NMR spectroscopy was used to study the microstructure of the poly(α‐olefins) by the determination of the pentad monomer sequences. The thermal properties of the polymers were obtained by differential scanning calorimetry, DSC. The results were discussed in connection with the polymer microstructure. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4314–4325, 2009  相似文献   

6.
Homogeneous olefin polymerization catalysts are activated in situ with a co-catalyst ([PhN(Me)2-H]+[B(C6F5)4] or [Ph3C]+[B(C6F5)4]) in bulk polymerization media. These co-catalysts are insoluble in hydrocarbon solvents, requiring excess co-catalyst (>3 eq.). Feeding the activated species as a solution in an aliphatic hydrocarbon solvent may be advantageous over the in situ activation method. In this study, highly pure and soluble ammonium tetrakis(pentafluorophenyl)borates ([Me(C18H37)2N-H]+[B(C6F5)4] and [(C18H37)2NH2]+[B(C6F5)4]) containing neither water nor Cl salt impurities were prepared easily via the acid–base reaction of [PhN(Me)2-H]+[B(C6F5)4] and the corresponding amine. Using the prepared ammonium salts, the activation reactions of commercial-process-relevant metallocene (rac-[ethylenebis(tetrahydroindenyl)]Zr(Me)2 (1-ZrMe2), [Ph2C(Cp)(3,6-tBu2Flu)]Hf(Me)2 (3-HfMe2), [Ph2C(Cp)(2,7-tBu2Flu)]Hf(Me)2 (4-HfMe2)) and half-metallocene complexes ([(η5-Me4C5)Si(Me)2(κ-NtBu)]Ti(Me)2 (5-TiMe2), [(η5-Me4C5)(C9H9(κ-N))]Ti(Me)2 (6-TiMe2), and [(η5-Me3C7H1S)(C10H11(κ-N))]Ti(Me)2 (7-TiMe2)) were monitored in C6D12 with 1H NMR spectroscopy. Stable [L-M(Me)(NMe(C18H37)2)]+[B(C6F5)4] species were cleanly generated from 1-ZrMe2, 3-HfMe2, and 4-HfMe2, while the species types generated from 5-TiMe2, 6-TiMe2, and 7-TiMe2 were unstable for subsequent transformation to other species (presumably, [L-Ti(CH2N(C18H37)2)]+[B(C6F5)4]-type species). [L-TiCl(N(H)(C18H37)2)]+[B(C6F5)4]-type species were also prepared from 5-TiCl(Me) and 6-TiCl(Me), which were newly prepared in this study. The prepared [L-M(Me)(NMe(C18H37)2)]+[B(C6F5)4]-, [L-Ti(CH2N(C18H37)2)]+[B(C6F5)4]-, and [L-TiCl(N(H)(C18H37)2)]+[B(C6F5)4]-type species, which are soluble and stable in aliphatic hydrocarbon solvents, were highly active in ethylene/1-octene copolymerization performed in aliphatic hydrocarbon solvents.  相似文献   

7.
The polymerization behavior of cyclohexyl methacrylate and trimethylsilyloxyethyl methacrylate with the catalytic system Cp2ZrMe2/B(C6F5)3/ZnEt2 was examined. Block copolymers of these bulky methacrylates with methyl methacrylate (MMA), having high molecular weights and relatively narrow molecular weight distributions, were prepared. n‐Butyl acrylate and tert‐butyl acrylate were polymerized with various catalytic systems based on zirconocene complexes. These polymerizations seemed to proceed to a nonquantitative yield, producing polymers with high molecular weights and relatively low polydispersities. This behavior indicated the presence of termination reactions in the initiation step, which appeared to be faster than the propagation step. Block copolymers of these acrylates with MMA were synthesized with the catalytic system rac‐Et(Ind)2ZrMe2/[B(C6F5)4][Me2NHPh]+/ZnEt2, starting from the polymerization of MMA. The block copolymers produced were well defined in most cases, as indicated by size exclusion chromatography, NMR, and differential scanning calorimetry measurements. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3337–3348, 2005  相似文献   

8.
Norbornene polymerizations proceeded in toluene with bis(β‐ketoamino)nickel(II) {Ni[CH3C(O)CHC(NR)CH3]2 [R = phenyl ( 1 ) or naphthyl ( 2 )]} complexes as the catalyst precursors and the organo‐Lewis compound tris(pentafluorophenyl)borane [B(C6F5)3] as a unique cocatalyst. The polymerization conditions, such as the cocatalyst/catalyst ratio (B/Ni), catalyst concentration, monomer/catalyst ratio (norbornene/Ni), polymerization temperature, and polymerization time, were studied in detail. Both bis(β‐ketoamino)nickel(II)/B(C6F5)3 catalytic systems showed noticeably high conversions and activities. The polymerization activities were up to 3.64 × 107 g of polymer/mol of Ni h for complex 1 /(B(C6F5)3 and 3.80 × 107 g of polymer/mol of Ni h for complex 2 /B(C6F5)3, and very high conversions of 90–95% were maintained; both polymerizations provided high‐molecular‐weight polynorbornenes with molecular weight distributions (weight‐average molecular weight/number‐average molecular weight) of 2.5–3.0. The achieved polynorbornenes were confirmed to be vinyl‐addition and atactic polymers through the analysis of Fourier transform infrared, 1H NMR, and 13C NMR spectra, and the thermogravimetric analysis results showed that the polynorbornenes exhibited good thermal stability (decomposition temperature > 410 °C). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4733–4743, 2007  相似文献   

9.
Reactions of bis(phosphinimino)amines LH and L′H with Me2S ? BH2Cl afforded chloroborane complexes LBHCl ( 1 ) and L′BHCl ( 2 ), and the reaction of L′H with BH3 ? Me2S gave a dihydridoborane complex L′BH2 ( 3 ) (LH=[{(2,4,6‐Me3C6H2N)P(Ph2)}2N]H and L′H=[{(2,6‐iPr2C6H3N)P(Ph2)}2N]H). Furthermore, abstraction of a hydride ion from L′BH2 ( 3 ) and LBH2 ( 4 ) mediated by Lewis acid B(C6F5)3 or the weakly coordinating ion pair [Ph3C][B(C6F5)4] smoothly yielded a series of borenium hydride cations: [L′BH]+[HB(C6F5)3]? ( 5 ), [L′BH]+[B(C6F5)4]? ( 6 ), [LBH]+[HB(C6F5)3]? ( 7 ), and [LBH]+[B(C6F5)4]? ( 8 ). Synthesis of a chloroborenium species [LBCl]+[BCl4]? ( 9 ) without involvement of a weakly coordinating anion was also demonstrated from a reaction of LBH2 ( 4 ) with three equivalents of BCl3. It is clear from this study that the sterically bulky strong donor bis(phosphinimino)amide ligand plays a crucial role in facilitating the synthesis and stabilization of these three‐coordinated cationic species of boron. Therefore, the present synthetic approach is not dependent on the requirement of weakly coordinating anions; even simple BCl4? can act as a counteranion with borenium cations. The high Lewis acidity of the boron atom in complex 8 enables the formation of an adduct with 4‐dimethylaminopyridine (DMAP), [LBH ? (DMAP)]+[B(C6F5)4]? ( 10 ). The solid‐state structures of complexes 1 , 5 , and 9 were investigated by means of single‐crystal X‐ray structural analysis.  相似文献   

10.
Nickel(II) and palladium(II) complexes with α‐dioxime ligands dimethylglyoxime, diphenylglyoxime, and 1,2‐cyclohexanedionedioxime represent six new precatalysts for the polymerization of norbornene that can be activated with methylaluminoxane (MAO), the organo‐Lewis acid tris(pentafluorophenyl)borane [B(C6F5)3], and triethylaluminum (TEA) AlEt3. The palladium but not the nickel precatalysts could also be activated by B(C6F5)3 alone, whereas two of the three nickel precatalysts but none of the palladium systems are somewhat active with only TEA as a cocatalyst. It was possible to achieve very high polymerization activities up to 3.2 · 107 gpolymer/molmetal · h. With the system B(C6F5)3/AlEt3, the activation process can be formulated as the following two‐step reaction: (1) B(C6F5)3 and TEA lead to an aryl/alkyl group exchange and result in the formation of Al(C6F5)nEt3?n and B(C6F5)3?nEtn; and (2) Al(C6F5)nEt3?n will then react with the precatalysts to form the active species for the polymerization of norbornene. Variation of the B:Al ratio shows that Al(C6F5)Et2 is sufficient for high activation. Gel permeation chromatography indicated that it was possible to control the molar mass of poly(norbornene)s by TEA or 1‐dodecene as chain‐transfer agents; the molar mass can be varied in the number‐average molecular weight range from 2 · 103 to 9 · 105 g · mol?1. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3604–3614, 2002  相似文献   

11.
A borane B(C6F5)3‐catalyzed metathesis reaction between the Si?C bond in the cyclic (alkyl)(amino)germylene (CAAGe) 1 and the Si?H bond in a silane (R3SiH; 2 ) is reported. Mechanistic studies propose that the initial step of the reaction involves Si?H bond activation to furnish an ionic species [ 1 ‐SiR3]+[HB(C6F5)3]?, from which [Me3Si]+[HB(C6F5)3]? and an azagermole intermediate are generated. The former yields Me3SiH concomitant with the regeneration of B(C6F5)3 whereas the latter undergoes isomerization to afford CAAGes bearing various silyl groups on the carbon atom next to the germylene center. This strategy allows the straightforward synthesis of eight new CAAGes starting from 1 .  相似文献   

12.
The three-coordinate aluminum cations ligated by N-heterocyclic carbenes (NHCs) [(NHC) ⋅ AlMes2]+[B(C6F5)4] (NHC=IMeMe 4 , IiPrMe 5 , IiPr 6 , Mes=2,4,6-trimethylphenyl) were prepared via hydride abstraction of the alanes (NHC) ⋅ AlHMes2 (NHC=IMeMe 1 , IiPrMe 2 , IiPr 3 ) using [Ph3C]+[B(C6F5)4] in toluene as hydride acceptor. If this reaction was performed in diethyl ether, the corresponding four-coordinate aluminum etherate cations [(NHC) ⋅ AlMes2(OEt2)]+ [B(C6F5)4] 7 – 9 (NHC=IMeMe 7 , IiPrMe 8 , IiPr 9 ) were isolated. According to a theoretical and experimental assessment of the Lewis-acidity of the [(IMeMe) ⋅ AlMes2]+ cation is the acidity larger than that of B(C6F5)3 and of similar magnitude as reported for Al(C6F5)3. The reaction of [(IMeMe) ⋅ AlMes2]+[B(C6F5)4] 4 with the sterically less demanding, basic phosphine PMe3 afforded a mixed NHC/phosphine stabilized cation [(IMeMe) ⋅ AlMes2(PMe3)]+[B(C6F5)4] 10 . Equimolar mixtures of 4 and the sterically more demanding PCy3 gave a frustrated Lewis-pair (FLP), i.e., [(IMeMe) ⋅ AlMes2]+[B(C6F5)4]/PCy3 FLP-11 , which reacts with small molecules such as CO2, ethene, and 2-butyne.  相似文献   

13.
Polymerizations of higher α‐olefins, 1‐pentene, 1‐hexene, 1‐octene, and 1‐decene were carried out at 30 °C in toluene by using highly isospecific rac‐Me2Si(1‐C5H2‐2‐CH3‐4‐t Bu)2Zr(NMe2)2 (rac‐1) compound in the presence of Al(iBu)3/[CPh3][B(C6F5)4] as a cocatalyst formulation. Both the bulkiness of monomer and the lateral size of polymer influenced the activity of polymerization. The larger lateral of polymer chain opens the π‐ligand of active site wide and favors the insertion of monomer, while the large size of monomer inserts itself into polymer chain more difficultly due to the steric hindrance. Highly isotactic poly(α‐olefin)s of high molecular weight (MW) were produced. The MW decreased from polypropylene to poly(1‐hexene), and then increased from poly(1‐hexene) to poly(1‐decene). The isotacticity (as [mm] triad) of the polymer decreased with the increased lateral size in the order: poly(1‐pentene) > poly(1‐hexene) > poly(1‐octene) > poly(1‐decene). The similar dependence of the lateral size on the melting point of polymer was recorded by differential scanning calorimetry (DSC). 1H NMR analysis showed that vinylidene group resulting from β‐H elimination and saturated methyl groups resulting from chain transfer to cocatalyst are the main end groups of polymer chain. The vinylidene and internal double bonds are also identified by Raman spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1687–1697, 2000  相似文献   

14.
Ethylene polymerizations with catalytic systems Me2SiCp*NtBuZrX2 ( 1 ) [Cp* = C5(CH3)4; X = Cl ( 1Cl ), Me ( 1Me )], triisobutylaluminum (TIBA), perfluorophenylborate CatB(C6F5)4 [Cat = CPh3 ( 3 ), Me2NHPh ( 4 )], or Me2SiCp2ZrX2 [X = Cl ( 2Cl ), Me ( 2Me )]/TIBA/ 3 ( 4 ) were performed within a wide range of ethylene pressures of different Al/Zr ratios, and Zr/B = 1. Catalytic systems 1Cl ( 2Cl )/TIBA/ 3 led to the formation of very high linear molecular weight polyethylene (PE) of Mη ∼2,000,000 with low activity. The replacement of both chlorine ligands in the precatalyst for the methyl ones led to the formation of active species producing low molecular weight PE with high activity. Chain transfer to ethylene was shown to be the main reaction controlling PE chain propagation: kp/ktr ∼20–30 for 1Me /TIBA/ 3 and kp/ktr ∼350–500 for 2Me /TIBA/ 3 . It was suggested that TIBA was present in the active center first in the form of a neutral heterobimetallic Zr–Al bridged complex followed by the formation of a partially polarized Zr–Al(Cl)R2 (R = iBu) or an unreactive Zr–AlR3 cationic complex by abstraction of the alkyl ligand under the action of borate. It was concluded that AlR3 from the latter cationic complex may be easily reversibly replaced under the specific coordination of ethylene or accumulated α-olefin, giving rise to highly labile and sterically accessible cationic species. Experiments on ethylene polymerization with the catalytic systems 1Cl ( 1Me )/TIBA/ 3 /Ph2NH, 1Cl ( 1Me )/TIBA/ 4, 2Cl ( 2Me )/TIBA/ 3 /Ph2NH, and 2Cl ( 2Me )/TIBA/ 4 were performed to confirm the suggestion. Catalytic systems derived from dichloride complexes in the presence of a σ-donor substrate also produced low molecular weight PEs with molecular weight characteristics similar to those of products obtained with the dimethylated precatalysts. The specific feature of active species derived from 2Me complexes to isomerize coordinated α-olefin into trans-vinylene polymer chains was also revealed. The catalytic behavior of the ternary catalytic system based on 2Me relative to 2Me or 2Cl precatalysts activated with polymethylaluminoxane at different Al/Zr ratios was compared. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1901–1914, 2001  相似文献   

15.
Summary : A series of polypropylene/poly(ethylene-co-propylene) in-reactor alloy were synthesized by a TiCl4/MgCl2/SiO2/diester type Ziegler-Natta catalyst, using triethylaluminium (TEA), triisobutylaluminium (TIBA) or TEA/TIBA mixtures of different molar ratio as cocatalyst. Mechanical properties of the alloy are strongly influenced by the cocatalyst. Toughness-stiffness balance of the alloy synthesized using a 50/50 TEA/TIBA mixture as cocatalyst is much better than that of the alloy based on pure TEA cocatalyst. Changes in copolymer chain structure and composition distribution are thought to be the main reason for this improvement of properties.  相似文献   

16.
Weakly coordinating anions (WCAs) are important for academic reasons as well as for technical applications. Tetrakis(pentafluoroethyl)gallate, [Ga(C2F5)4]?, a new WCA, is accessible by treatment of [GaCl3(dmap)] (dmap=4‐dimethylaminopyridine) with LiC2F5. The anion [Ga(C2F5)4]? proved to be reluctant towards deterioration by aqueous hydrochloric acid or lithium hydroxide. Various salts of [Ga(C2F5)4]? were synthesized with cations such as [PPh4]+, [CPh3]+, [(O2H5)2(OH2)2]2+, and [Li(dec)2]+ (dec=diethyl carbonate). Thermolysis of [(O2H5)2(OH2)2][Ga(C2F5)4]2 gives rise to a dihydrate of tris(pentafluoroethyl)gallane, [Ga(C2F5)3(OH2)2]. All products were characterized by NMR and IR spectroscopy, mass spectrometry, X‐ray diffraction, and elemental analysis. Furthermore, an outlook for the application of [Li(dec)2][Ga(C2F5)4] as a conducting salt in lithium‐ion batteries is presented.  相似文献   

17.
The pnictocenium salts [Cp*PCl]+[μCl]? ( 1 a ), [Cp*PCl]+[ClAl(ORF)3]? ( 1 b ), [Cp*AsCl]+[ClAl(ORF)3]? ( 2 ), and [(Cp*)2P]+[μCl]? ( 3 ), in which Cp*=Me5C5, μCl=(FRO)3Al? Cl? Al(ORF)3, and ORF=OC(CF3)3, were prepared by halide abstraction from the respective halopnictines with the Lewis superacid PhF→Al(ORF)3. 1 The X‐ray crystal structures of 1 a , 2 , and 3 established that in the half as well as in the sandwich cations the Cp* rings are attached in an η2‐fashion. By using one or two equivalents of the Lewis acid, the two new weakly coordinating anions [μCl]? and [ClAl(ORF)3]? resulted. They also stabilize the highly reactive cations in PhF or 1,2‐F2C6H4 solution at room temperature. The chloride ion affinities (CIAs) of a range of classical strong Lewis acids were also investigated. The calculations are based on a set of isodesmic BP86/SV(P) reactions and a non‐isodesmic reference reaction assessed at the G3MP2 level.  相似文献   

18.
Silylium ions (“R3Si+”) are found to catalyze both 1,4‐hydrosilylation of methyl methacrylate (MMA) with R3SiH to generate the silyl ketene acetal initiator in situ and subsequent living polymerization of MMA. The living characteristics of the MMA polymerization initiated by R3SiH (Et3SiH or Me2PhSiH) and catalyzed by [Et3Si(L)]+[B(C6F5)4] (L = toluene), which have been revealed by four sets of experiments, enabled the synthesis of the polymers with well‐controlled Mn values (identical or nearly identical to the calculated ones), narrow molecular weight distributions (? = 1.05–1.09), and well defined chain structures {H? [MMA]n? H}. The polymerization is highly efficient too, with quantitative or near quantitative initiation efficiencies (I* = 96–100%). Monitoring of the reaction of MMA + Me2PhSiH + [Et3Si(L)]+[B(C6F5)4] (0.5 mol%) by 1H NMR provided clear evidence for in situ generation of the corresponding SKA, Me2C?C(OMe)OSiMe2Ph, via the proposed “Et3Si+”‐catalyzed 1,4‐hydrosilylation of monomer through “frustrated Lewis pair” type activation of the hydrosilane in the form of the isolable silylium‐silane complex, [Et3Si? H? SiR3]+[B(C6F5)4]. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1895–1903  相似文献   

19.
Using [Ga(C6H5F)2]+[Al(ORF)4]?( 1 ) (RF=C(CF3)3) as starting material, we isolated bis‐ and tris‐η6‐coordinated gallium(I) arene complex salts of p‐xylene (1,4‐Me2C6H4), hexamethylbenzene (C6Me6), diphenylethane (PhC2H4Ph), and m‐terphenyl (1,3‐Ph2C6H4): [Ga(1,4‐Me2C6H4)2.5]+ ( 2+ ), [Ga(C6Me6)2]+ ( 3+ ), [Ga(PhC2H4Ph)]+ ( 4+ ) and [(C6H5F)Ga(μ‐1,3‐Ph2C6H4)2Ga(C6H5F)]2+ ( 52+ ). 4+ is the first structurally characterized ansa‐like bent sandwich chelate of univalent gallium and 52+ the first binuclear gallium(I) complex without a Ga?Ga bond. Beyond confirming the structural findings by multinuclear NMR spectroscopic investigations and density functional calculations (RI‐BP86/SV(P) level), [Ga(PhC2H4Ph)]+[Al(ORF)4]?( 4 ) and [(C6H5F)Ga(μ‐1,3‐Ph2C6H4)2Ga(C6H5F)]2+{[Al(ORF)4] ?}2 ( 5 ), featuring ansa‐arene ligands, were tested as catalysts for the synthesis of highly reactive polyisobutylene (HR‐PIB). In comparison to the recently published 1 and the [Ga(1,3,5‐Me3C6H3)2]+[Al(ORF)4]? salt ( 6 ) (1,3,5‐Me3C6H3=mesitylene), 4 and 5 gave slightly reduced reactivities. This allowed for favorably increased polymerization temperatures of up to +15 °C, while yielding HR‐PIB with high contents of terminal olefinic double bonds (α‐contents=84–93 %), low molecular weights (Mn=1000–3000 g mol?1) and good monomer conversions (up to 83 % in two hours). While the chelate complexes delivered more favorable results than 1 and 6 , the reaction kinetics resembled and thus concurred with the recently proposed coordinative polymerization mechanism.  相似文献   

20.
Vinylsilanes CH2CHSiR3 (R = Me, NMe2, OMe, OTMS) copolymerize with ethylene rapidly in the presence of catalytic amounts of [Cp′2ZrMe][MeB(C6F5)3] (Cp′ = η5‐C5Me5) ( I ) to give high molecular weight silyl‐functionalized polyethylene. The molecular weight of the polymer can be controlled by varying the comonomer concentration as well as the reaction temperature. Relatively low molecular weight polymer was produced at a higher silyl monomer concentration and a higher polymerization temperature. The incorporation of silyl monomer in the polymer is in the range of 0.1‐ 6.0%. On the other hands, catalysts [Cp2ZrMe][MeB(C6F5)3] (Cp′ = η5‐C5H5) ( II ) and [Cp″2ZrMe][MeB(C6F5)3] (Cp″ = η5‐1,2‐C5Me2H3) ( III ) show much lower activity. With the use of more coordinatively unsaturated constrained geometry catalysts (CGC), Me2Si(η5‐C5Me4)(NtBu)MMe][MeB(C6F5)3] ( IV , M = Zr; V , M = Ti), the silyl monomer incorporation in the polymer was increased to 40%. The Ti catalyst is more active and produces polymer with a higher molecular weight with a higher silyl monomer incorporation at 23 °C. The copolymerization of vinyltrimethylsilane with propylene was also investigated with these catalysts, yielding high silyl‐functionalized propylene copolymer/oligmer. The microstructure of the copolymers/oligomers has been thoroughly investigated by 1D and 2D NMR techniques (1H, 13C, NOE, DEPT, HETCOR, and FLOCK). The results show that the backbone of the copolymers/oligomers is essentially random. Several termination pathways have been identified. In particular, two unsaturated silyl terminations, cis and/or trans‐TMS CHCH , were identified with the constrained geometry catalysts. Their formation was rationalized based on transition state models. It was found that occasional 1,2‐insertion of either propylene or vinyltrimethylsilane into the chain propagation process has a high probability serving as the trigger for polymer chain termination via β‐H elimination. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1308–1321  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号