首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
Two flame spray methods, emulsion combustion method (ECM) and flame spray pyrolysis (FSP), were compared for synthesis of pure and mixed SiO2 and ZnO nanoparticles. The effect of silicon precursor was investigated using liquid hexamethyldisiloxane (HMDSO) or SiO2 sol, while for ZnO zinc acetate (ZA) was used. Gas phase reaction took place when using HMDSO as Si precursor, forming nanoparticles, whereas the SiO2 sol used as Si source was not evaporated in the flame, creating large aggregates of the sol particles (e.g. 1 m). The FSP of ZA produced ZnO homogeneous nanoparticles. Lower flame temperatures in ECM than in FSP resulted in mixed gas and liquid phase reaction, forming ZnO particles with inhomogeneous sizes. The FSP of HMDSO and ZA led to intimate gas-phase mixing of Zn and Si, suppressing each other's particle growth, forming nanoparticles of 19 nm in BET-equivalent average primary particle diameter. Nucleation of ZnO and SiO2 occurred independently by ECM of HMDSO and ZA as well as by FSP of the SiO2 sol and ZA, creating a ZnO and SiO2 mixture. The reaction of ZnO with SiO2 was likely to be enhanced by ECM of the SiO2 sol and ZA where both Zn and Si species were not evaporated completely, resulting in ZnO, -willemite and Zn1.7SiO4 mixed phase.  相似文献   

2.
Nanocrystalline Mn‐doped zinc oxides Zn1−xMnxO (x = 0–0.10) were synthesized by the sol–gel technique at low temperature. The calcination temperature of the as‐prepared powder was found at 350 °C using differential thermal analysis. A thermogravimetric analysis showed that there is a mass loss in the as‐prepared powder till 350 °C and an almost constant mass till 800 °C. The X‐ray diffraction patterns of investigated nanopowders calcined at 350 °C correspond to the hexagonal ZnO structure without any foreign impurities. The average grain size of the nanocrystal that was observed around ∼25–40 nm from transmission electron microscopy matched well with the crystallite size calculated from the line shape of X‐ray diffraction. The chemical bonding structure in Zn1−xMnxO nanopowders was examined using X‐ray photoelectron spectroscopy techniques, which indicate substitution of Mn2+ ions into Zn2+ sites in ZnO lattice. Micro Raman spectroscopy confirmed the insertion of Mn ions in the ZnO host matrix, and similar wurtzite structure of Zn1−xMnxO (x < 10%) nanocrystals. Temperature‐dependent Raman spectra of the nanocrystals displayed suppression of luminescence and enhancement in full width at half maximum in pure ZnO nanocrystals with increase in temperature, which suggests an enhancement in particle size at elevated temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
采用溶胶-凝胶技术在玻璃衬底上制备了ZnO薄膜和ZnO-SiO2复合膜.原子力显微镜照片显示ZnO薄膜具有球状纳米晶粒;可见光-紫外透射光谱表明ZnO-SiO2复合膜在可见光区的透过率大约是85%,透过率从330 nm开始下降,到290 nm附近降为零.由于量子效应,吸收边出现明显的蓝移.在室温下用不同波长的光激发ZnO-SiO2复合膜,光致发光谱显示ZnO-SiO2复合膜对应于激子发射的290 nm附近的紫外发光峰与透射谱所显示的吸收边位置一致,没有出现斯托克斯红移.同时,ZnO-SiO2复合膜出现了双光子和三光子吸收现象和上转换发光现象. 关键词: 2')" href="#">ZnO-SiO2 量子效应 双光子和三光子吸收 上转换发光  相似文献   

4.
Four glasses in ZnO–SiO2–B2O3 ternary system were prepared by the melt quenching method with the objective of optimizing sub-nanosecond emission over the UV region of zinc borosilicate glasses used in superfast scintillators. The effect of vanadium addition and heat treatment on phase formation, microstructure and photoluminescence properties of the glasses was characterized by means of DTA, XRD, SEM and fluorescence spectrophotometer. Vanadium contributed to the near-band-edge emission in two ways, by introducing donor levels in the energy band of ZnO particles and by facilitating the precipitation of ZnO and willemite crystals. Furthermore, nucleation of willemite and zinc oxide phases, which are both the origins of the intense emission bands in the UV region, was facilitated with increasing either the time or temperature of heat treatments. Photoluminescence spectra showed the elimination of the visible emission band which is favorable in scintillating glasses.  相似文献   

5.
Three methods were used to modify nano‐SiO2 particles with various interfaces and interfacial interactions between the particles and Poly(vinyl chloride) (PVC) matrix. The experimental results show that direct surface treatment of nano‐SiO2 particles with a silane coupling agent (KH‐550) is not effective for improving the mechanical properties of PVC/SiO2 composites. Both ultrasonic oscillations and high energy vibromilling improve the interfacial interactions between SiO2 particles and PVC matrix. With these methods, the aggregation of SiO2 particles was inhibited and a good dispersion of SiO2 particles in PVC matrix was obtained, which improved the mechanical properties of the PVC/SiO2 composite. The mechanical properties of the PVC/SiO2 composite with high energy vibromilling modified SiO2 particles were remarkably improved. Scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), dynamic mechanical analysis (DMA), and theoretical calculations demonstrate these improvements.  相似文献   

6.
Zn2SiO4:Mn green phosphor having comparable photoluminescence (PL) efficiency with commercial phosphor has been synthesized at 1000 °C using solid state reactions involving ZnO, silicic acid and manganese acetate. The water of crystallization attached to SiO2 in silicic acid whose dissociation at 1000 °C seem to promote the sintering efficiency of Zn2SiO4:Mn. Incremental ZnO addition and re-firing at 1000 °C promote the diffusion rate of ZnO and SiO2. The formation of a single crystalline phase of willemite structure in the samples was confirmed by powder XRD measurements. The phosphor exhibit an intense excitation band centered around 275 nm and a relatively weak excitation centered around 380 nm while the broad band green emission peaks at 524 nm. Other parameters studied include PL spectra, grain morphology, ZnO/SiO2 molar ratio, Mn concentration, co-dopant/flux and the effect of chemical forms of Mn dopant as well as silica on the PL efficiency.  相似文献   

7.
The blue pigment as well as other materials in a blue, white and ‘gold’ 17th century Delft dish were analysed and compared to the blue pigment(s) used in a modern blue‐and‐white Delft dish, obtained from a tourist shop in Amsterdam in 2004. The ancient Delft blue pigment was compared to a commercial Delft blue powder identified as a cobalt‐doped willemite, Zn2−xCoxSiO4. The 17th century Delft pigment showed a closer correspondence to the olivine, alpha‐cobalt silicate. The pigment in the modern blue Delft dish was mainly a vanadium‐doped zircon, ZrSiO4:V4+, with small amounts of cobalt, identified by EDX analysis. The cobalt compound could, however, not be characterised here for the modern dish. The pigment in the ‘golden’ rim was identified as pyrochlore yellow, PbSnSbO6.5. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Stable suspensions of pentacene functionalised ZrO2 nano‐particles were synthesised using a microwave plasma process. The particles were dispersed in‐situ in ethylene glycol. The formation of coated particles with small cores and a well defined size in the range of 3–5 nm was shown by X‐ray diffraction. In difference to resublimed pure pentacene, suspensions of the coated nano‐particles remained stable for weeks, as confirmed by the observation of a small aggregate size in dynamic light scattering. Thin films of the particles on Si based substrates were obtained by drop‐casting. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Anatase is the low-temperature (300–550 °C) crystalline polymorph of TiO2 and it transforms to rutile upon heating. For applications utilizing the photocatalytic properties of nanoscale anatase at elevated temperatures (over 600 °C) the issue of phase stabilisation is of major interest. In this study, binary TiO2/SiO2 particles were synthesized by a flame aerosol process with TiCl4 and SiCl4 as precursors. The theoretical Si/Ti ratio was varied in the range of 0.7–1.3 mol/mol. The synthesized TiO2/SiO2 samples were heat treated at 900 and 1,000 °C for 3 h to determine the thermostability of anatase. Pyrogenic TiO2 P25 (from Evonik/Degussa, Germany) widely applied as photocatalyst was used as non-thermostabilized reference material for comparison of photocatalytic activity of powders. Both the non-calcinated and calcinated powders were characterized by means of XRD, TEM and BET. Photocatalytic activity was examined with dichloroacetic acid (DCA) chosen as a model compound. It was found that SiO2 stabilized the material retarding the collapse of catalyst surface area during calcination. The weighted anatase content of 85% remains completely unchanged even after calcination at 1,000 °C. The presence of SiO2 layer/bridge as spacer between TiO2 particles freezes the grain growth: the average crystallite size increased negligibly from 17 to 18 nm even during the calcination at 1,000 °C. Due to the stabilizing effect of SiO2 the titania nanoparticles calcinated at 900 and 1,000 °C show significant photocatalytic activity. Furthermore, the increase in photocatalytic activity with calcination temperature indicates that the titania surface becomes more accessible either due to intensified cracking of the SiO2 layer or due to enhanced transport of SiO2 into the necks thus releasing additional titania surface.  相似文献   

10.
A method for the quantitative analysis of Co, Ni, Pd, Ag, and Au in the scrapped printed‐circuit‐board ash by X‐ray fluorescence (XRF) spectrometry using loose powder was developed. The printed‐circuit‐board samples were converted to ash pyrolytically in porcelain crucibles by sequential heating using a gas burner and electric furnace, and then were ground with a ball mill. The calibrating standards were prepared by adding the appropriate amounts of NiO powder and aqueous standard solutions containing Co, Pd, Ag, and Au to the base mixtures of Al2O3 (5.0 mass%), SiO2 (49 mass%), CaCO3 (11 mass%), Fe2O3 (3.3 mass%), and CuO (30 mass%) as a matrix. Then, 10 g of the resulting mixtures were dried and homogenized for 90 min with a V‐type mixing machine. Specimens for XRF analysis were prepared from the so‐called loose‐powder method in which powder samples were compacted into a hole (12.0‐mm diameter and 5.0‐mm height) in an acrylic plate and covered with a 6‐µm thickness of polypropylene film. Matrix effects were corrected using the intensity value of Compton scattering for PdKα, AgKα, and AuLβ2, and that of background scattering at 35.8° (2θ) for CoKα and NiKα. The detection limits corresponding to three times the standard deviation of the blank intensity were 2.5–45 µg g?1. The proposed method was validated against the pressed‐powder‐pellet method by comparing the calibration curves. Moreover, the concentrations of Co, Ni, Pd, and Ag determined using the proposed XRF method were approximately the same as those resulting from an atomic‐absorption‐spectrometric analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me3Si)2NH) (Me:CH3) and SiH4–C2H2, respectively, by a laser-induced gas-phase reaction. The complex permittivities of the nano Si/C/N composite powder and nano SiC powder were measured at a frequency range of 8.2–12.4 GHz. The real part (′) and imaginary part (″) of the complex permittivity, and dissipation factor (tg δ=″/′) of nano Si/C/N composite powder are much higher than those of nano SiC powder and bulk SiC, Si3N4, SiO2, and Si, especially the tg δ. The promising features of nano Si/C/N composite powder would be due to more complicated Si, C, and N atomic chemical environment than in a mixture of pure SiC and Si3N4 phase. The charged defects and quasi-free electrons moved in response to the electric field, diffusion or polarization current resulted from the field propagation. Because there exists graphite in the nano Si/C/N composite powder, some charge carries are related to the sp3 dangling bonds (of silicon and carbon) and unsaturated sp2 carbons. The high ″ and tg δ of nano Si/C/N composite powder were due to the dielectric relaxation. The nano Si/C/N composite powder would be a good candidate for electromagnetic interface shielding material.  相似文献   

12.
We systematically investigated the photoluminescence (PL) and transmittance characteristics of ZnO-SiO2 opals with varied positions of the stop-band and film thicknesses. An improved ultraviolet (UV) luminescence was observed from ZnO-SiO2 composites over pure ZnO nanocrystals under 325 nm He-Cd laser excitation at room temperature. The UV PL of ZnO nanocrystals in SiO2 opals with stop-bands center of 410 nm is sensitive to the thickness of opal films, and the UV PL intensity increases with the film thickness increasing. The PL spectra of ZnO nanocrystals in SiO2 opals with stop-bands center of 570 nm show a suppression of the weak visible band. The experimental results are discussed based on the scattering and/or absorbance in opal crystals.  相似文献   

13.
Quantitative chemical analysis of individual particles from three commercial willemite fluorescent lamp powders (Zn2SiO4:Mn) has been made using an electron microprobe. A simple interference type spectrometer attachment and photomultiplier readout also allowed simultaneous recording of cathodoluminescence spectra of individual particles. There is significant grain-to-grain variation in the Zn/Mn and Zn/Si ratios calibrated against single-crystal material. In addition to the usual green particles, occasional orange and blue luminescing particles are observed in all the samples studied. Spectra of orange particles, which had higher concentrations of Mn, show two broad bands with peaks around 5300 Å and 5900 Å. Comparison with single crystals, artificially doped with Mn, suggest that the orange particles have a second phase, with tephroite structure, present along with willemite phase. Mn2+ in tephroite is six-fold coordinated, thus luminescence emission from this phase would be in the red region in comparison to Mn2+ in the willemite structure where it is four-fold coordinated.  相似文献   

14.
The kinetics of base catalyzed cyclization of 2,6‐dinitrophenylsulfanyl ethanenitrile and 2,4,6‐trinitrophenylsulfanyl ethanenitrile giving 2‐cyano‐7‐nitrobenzo[d]thiazole‐3‐oxide and 2‐cyano‐5,7‐dinitrobenzo[d]thiazole‐3‐oxide respectively was studied in methanolic methoxyacetate, acetate, trichlorophenoxide, N‐methylmorpholine, and N‐methylpiperidine buffers at 25 °C and I = 0.1 mol L?1. It was found that reaction involves both general acid and general base catalyses whose manifestation depends on the pKa of the acid‐buffer component and the ratio of both buffer components. In weakly basic buffers the rate‐limiting step is C? H bond breaking in the cyclic intermediate, while in strongly basic buffers the rate‐limiting step is the general acid‐catalyzed elimination of hydroxyl group from the intermediate. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
We show in this paper how zinc oxide (ZnO)/silver (Ag) composite microspheres can be prepared by the reduction of Ag(NH3)2+ with the reducing agent formaldehyde in aqueous solution on the surface of ZnO microspheres. During the preparation, Sn2+ was absorbed on the surface of ZnO microspheres for sensitization and activation, and then Ag(NH3)2+ was reduced to Ag nanoparticles by the reducing agent to obtain ZnO/Ag composite microspheres. SEM and TEM images revealed silver nanoparticles with a diameter ranging from tens to 100 nm. X‐Ray photoelectron spectra (XPS), X‐ray diffraction (XRD) patterns and UV‐vis spectra were used to characterize the structure of the ZnO/Ag composite microspheres. The origin of the surface‐enhanced Raman scattering properties was traced to the surface of the ZnO/Ag composite microspheres. The enhancement factor was estimated in detail, and the enhancement mechanism for the SERS effect was also investigated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Homogeneous ZnO Nanoparticles by Flame Spray Pyrolysis   总被引:2,自引:0,他引:2  
Zinc oxide (ZnO) nanoparticles were made by flame spray pyrolysis (FSP) of zinc acrylate–methanol–acetic acid solution. The effect of solution feed rate on particle specific surface area (SSA) and crystalline size was examined. The average primary particle diameter can be controlled from 10 to 20nm by the solution feed rate. All powders were crystalline zincite. The primary particle diameter observed by transmission electron microscopy (TEM) was in agreement with the equivalent average primary particle diameter calculated from the SSA as well as with the crystalline size calculated from the X-ray diffraction (XRD) patterns for all powders, indicating that the primary particles were rather uniform in diameter and single crystals. Increasing the solution feed rate increases the flame height, and therefore coalescence and/or surface growth was enhanced, resulting in larger primary particles. Compared with ZnO nanoparticles made by other processes, the FSP-made powder exhibits some of the smallest and most homogeneous primary particles. Furthermore, the FSP-made powder has comparable BET equivalent primary particle diameter with but higher crystallinity than sol–gel derived ZnO powders.  相似文献   

17.
We report the characterization of nano-size zinc oxide (ZnO) powder synthesized via microwave-assisted heating of Zn(CH3COO)2·2H2O and NaHCO3 solution with deionized water (DI water) as the solvent. The as-synthesized ZnO powder was calcined at temperatures from 400 to 800 °C for 8 h. The X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) spectra revealed pure wurtzite structure for the ZnO nanopowder (NP) calcined at 800 °C. Scanning electron microscopy (SEM) images showed increasing size ZnO NP with uniform size distribution with increase in calcination temperature. Significant UV emission at about 373 nm has been observed in the photoluminescence (PL) spectra of the as-synthesized and calcined ZnO NP. Our results showed enhanced PL intensity with a reduced full-width at half-maximum (FWHM) for ZnO NP synthesized at higher calcination temperature.  相似文献   

18.
Crack‐free (100–x) SiO2x SnO2 glass‐ceramic monoliths have been prepared by the sol–gel method obtaining for the first time SnO2 concentrations of 20% with annealing at 1100 °C. Heat‐treatment resulted in the formation and growth of SnO2 nanocrystals within the silica matrices. Combined use of Fourier transform–Raman spectroscopy and in situ high‐temperature X‐Ray diffraction shows that SnO2 particles begin to crystallize in the cassiterite‐type phase at 80 °C and that their average apparent size remains around 7 nm, even after annealing at 1100 °C. Nanocrystal sizes and size distributions determined by low‐wavenumber Raman are in good agreement with those obtained from transmission electron microscopy measurements. Results indicate that the formation and the growth of SnO2 nanocrystals impose a residual porosity in the silica matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Spherical NaYF4 upconversion nanocrystals with mean radii of about 5 and 11 nm are observed to form colloidal crystals, i.e., 3D assemblies of the particles with long‐range order. The colloidal crystals of the larger particles form directly in solution when dispersions of the particles in toluene are stored at room temperature for several weeks. Crystallization of the smaller particles takes place when their dispersions in hexane are slowly dried at elevated temperatures. The formation and the structure of the colloidal crystals are studied by small‐angle X‐ray scattering (SAXS). SAXS measurements show that the smaller as well as the larger particles assemble into a face‐centered cubic lattice with unit cell dimensions of a = 18.7 nm and a = 35.5 nm, respectively. The SAXS data also show that the particles in the colloidal crystals still bear a layer of oleic acid on their surfaces. The thickness of this layer is 1.5–1.8 nm, as determined by comparing the unit cell dimensions of the colloidal crystals with the mean particle sizes. The latter could be very precisely determined from the distinct oscillations observed in the SAXS data of dilute colloidal dispersions of the nanocrystals.  相似文献   

20.
Exfoliated Bi2Sr2CaCu2O8+δ (Bi‐2212) single crystals were prepared by micromechanical cleavage of bulk Bi‐2212 single crystals on SiO2/Si substrates. Room temperature micro‐Raman spectra were collected using a 532‐nm laser source. The evolutions of the spectra of A1g (Bi), A1g (Sr), and A1g (OBi) Raman modes with different thicknesses of the samples were studied. The refractive index of Bi‐2212 single crystal was obtained by studying the intensity evolutions based on the interference effect. The observed wavenumber shifts of the A1g (Bi), A1g (Sr), and A1g (OBi) modes were analyzed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号