首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Owing to the implementation of acquisition techniques specific for nuclei with very large quadrupolar interaction (full shifted echo and variable offset cumulative spectra (VOCS)), NMR spectra of 69Ga and 71Ga are obtained in crystallised (PbGaF5, Pb3Ga2F12, Pb9Ga2F24 and CsZnGaF6) and glassy (PbF2–ZnF2–GaF3) gallium fluorides. Simulations of both static (full echo or VOCS) and 15 kHz MAS spectra allow to obtain consistent determinations of isotropic chemical shifts and very large quadrupolar parameters (νQ up to 14 MHz). In the crystalline compounds whose structures are unknown, the number and the local symmetry of the different gallium sites are tentatively worked out. For the glassy systems, a continuous Czjzek's distribution of the NMR quadrupolar parameters accounts for the particular shape of the NMR spectrum.  相似文献   

2.
25Mg NMR parameters have been determined for two polymorphs of enstatite (MgSiO3), an important magnesium silicate phase present as a major component of the Earth's upper mantle. The crystal structures of both polymorphs contain two crystallographically distinct magnesium sites; however, only a single resonance is observed in 25Mg MAS NMR spectra recorded at 14.1 and 20.0 T. First-principles calculations performed on geometry-optimised crystal structures reveal that the quadrupolar interaction for the second site is expected to be very large, resulting in extensive broadening of the spectral resonance, explaining its apparent absence in the NMR spectrum. 25Mg QCPMG NMR experiments employing variable offset cumulative spectroscopy (VOCS) are used to observe the broadened site and enable measurement of NMR parameters. The large difference in quadrupolar interaction between the two crystallographic magnesium sites is rationalised qualitatively in terms of the distortion of the local coordination environment as well as longer-range effects using a simple point charge model.  相似文献   

3.
The high-resolution pure rotational spectrum of GaF has been measured using a Balle-Flygare-type Fourier transform spectrometer. Improved nuclear quadrupolar coupling constants and rotational constants have been obtained along with the first reported fluorine spin-rotation constant for gallium fluoride, C(I) ((69)Ga(19)F, v = 0) = +32.0(21) kHz. Accurate spin-rotation tensors from microwave or molecular beam spectroscopy are particularly important to NMR spectroscopists and theoreticians because these data provide information about anisotropic nuclear magnetic shielding in the absence of intermolecular effects. For quadrupolar nuclei such as gallium, the quadrupolar interaction is sufficiently large that it is very difficult to characterize shielding tensors directly via NMR spectroscopy. The experimentally determined nuclear quadrupolar coupling constants and spin-rotation constants for GaF are compared with the results of a series of high-level ab initio calculations carried out at various levels of theory with a range of basis sets. Further calculations on BF and AlF, supplemented with available experimental data for InF and TlF, allow for the investigation of trends in nuclear magnetic shielding, spin-rotation, and electric field gradient tensors in the group-13 fluorides. Calculations at the MP2/6-311++G** and MP2/6-311G(2df, 2pd) levels provide the most consistently satisfactory results in comparison with the experimental data. Copyright 2000 Academic Press.  相似文献   

4.
The isotropic chemical shift of 207Pb is used to perform structural investigations of crystalline fluoride compounds (PbF2, Pb2ZnF6, PbGaF5, Pb3Ga2F12 and Pb9Ga2F24) and transition metal fluoride glasses (TMFG) of the PZG family (PbF2-ZnF2-GaF3). Using 207Pb Cross Polarisation Magic Angle Spinning (CP-MAS) NMR with 19F decoupling, it is shown that the isotropic chemical shift of 207Pb varies on a large scale (1000 ppm) and that the main changes of its value are not due to the nearest neighbour fluorines but may be related to the number of next nearest neighbour (nnn) Pb2+ ions. In this way, it is demonstrated that 207Pb chemical shift is an interesting probe to investigate medium range order in either crystalline or glassy fluoride systems. The 207Pb delta(iso) parameter has been linearly correlated to the number of nnn Pb2+ ions.  相似文献   

5.
We report new measurements of NMR parameters for 71Ga in gallium bearing oxide reference compounds, ranging from perfectly ordered systems to disordered crystalline structures and their aluminate counterparts. Static, MAS, and QPASS spectra are obtained at magnetic fields ranging from 7.0 to 18.8 T. With these results we enhance the previously established correlation between isotropic chemical shifts of 71Ga and 27Al and propose a correlation between gallium and aluminum electric field gradients (EFG). This correlation shows that the EFG at 71Ga sites are generally three times greater than those at equivalent 27Al sites.  相似文献   

6.
93Nb (I = 9/2) multiple-quantum magic-angle spinning (MQMAS) NMR spectra of a series of inorganic niobates have been measured. 93Nb MQMAS spectroscopy yields spectra with typically an order of magnitude higher resolution than that obtainable with 93Nb MAS spectroscopy and 93Nb dynamic-angle spinning (DAS) spectroscopy. For example, the full-width at half-maximums of the 93Nb resonances of LiNbO3 were 9 (MAS), 5.8 (DAS), and 0.7 kHz (MQMAS). Broadening of the 93Nb MAS and DAS spectra is due to the second-order quadrupolar and homonuclear dipolar interactions, respectively. The quadrupolar products (P(O)) and isotropic chemical shifts (delta(iso)) of the 93Nb resonances of LiNbO3, NaNbO3, PbNb2O6, Pb2Nb2O7, Pb3Nb2O8, Pb3Nb4O15, Pb3Nb4O13, and Pb1.83Nb1.71Mg0.29O6.39 were determined from MQMAS spectra and range from 13.6 to 26.8 MHz and from -951 to -1113 ppm, respectively. Resonances with relatively large quadrupolar coupling constants (> 30 MHz) were not observed using MQMAS spectroscopy, but were detected using nutation spectroscopy. The applicability and limitations of MQMAS spectroscopy in studying inorganic niobates containing multiple 93Nb resonances are addressed and compared with those of MAS, nutation, and DAS spectroscopies.  相似文献   

7.
An NMR technique to measure pure-phase two-dimensional nutation NMR spectra, that yields higher resolution than traditional nutation experiments is reported. Using this technique 93Nb nutation NMR spectra of PbNb2O6 and the technologically important Pb(Mg1/3Nb2/3)O3 (PMN) have been measured and the quadrupolar coupling constant of the niobium site in PbNb2O6 (C(Q) = 19 +/- 2 MHz) determined. Estimates of the quadrupolar coupling constants for three different resonances associated with different niobium(V) sites in PMN (C(Q) < 1.2 MHz, approximately 17 MHz, and > 62 MHz) are also reported.  相似文献   

8.
Multifrequency pulsed NMR experiments on quadrupole-perturbed I=3/2 spins in single crystals are shown to be useful for measuring spin-lattice relaxation parameters even for a mixture of quadrupolar plus magnetic relaxation mechanisms. Such measurements can then be related to other MAS-NMR experiments on powders. This strategy is demonstrated by studies of (71)Ga and (69)Ga (both I=3/2) spin-lattice relaxation behavior in a single-crystal (film) sample of gallium nitride, GaN, at various orientations of the axially symmetric nuclear quadrupole coupling tensor. Observation of apparent single-exponential relaxation behavior in I=3/2 saturation-recovery experiments can be misleading when individual contributing rate processes are neglected in the interpretation. The quadrupolar mechanism (dominant in this study) has both a single-quantum process (T(1Q1)) and a double-quantum process (T(1Q2)), whose time constants are not necessarily equal. Magnetic relaxation (in this study most likely arising from hyperfine couplings to unpaired delocalized electron spins in the conduction band) also contributes to a single-quantum process (T(1M)). A strategy of multifrequency irradiation with observation of satellite and/or central transitions, incorporating different initial conditions for the level populations, provides a means of obtaining these three relaxation time constants from single-crystal (71)Ga data alone. The (69)Ga results provide a further check of internal consistency, since magnetic and quadrupolar contributions to its relaxation scale in opposite directions compared to (71)Ga. For both perpendicular and parallel quadrupole coupling tensor symmetry axis orientations small but significant differences between T(1Q1) and T(1Q2) were measured, whereas for a tensor symmetry axis oriented at the magic-angle (54.74 degrees ) the values were essentially equal. Magic-angle spinning introduces a number of complications into the measurement and interpretation of the spin-lattice relaxation. Comparison of (71)Ga and (69)Ga MAS-NMR saturation-recovery curves with both central and satellite transitions completely saturated by a train of 90 degrees pulses incommensurate with the rotor period provides the simplest means of assessing the contribution from magnetic relaxation, and yields results for the quadrupolar mechanism contribution that are consistent with those obtained from the film sample.  相似文献   

9.
Qin Hu 《Applied Surface Science》2010,256(20):5952-5956
To explore the machining characteristics of glassy carbon by focused ion beam (FIB), particles induced by FIB milling on glassy carbon have been studied in the current work. Nano-sized particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to FIB milling. Two ion beam scanning modes - slow single scan and fast repetitive scan - have been tested. Fewer particles are found in single patterns milled in fast repetitive scan mode. For a group of test patterns milled in a sequence, it was found that a greater number of particles were deposited around sites machined early in the sequence. In situ EDX analysis of the particles showed that they were composed of C and Ga. The formation of particles is related to the debris generated at the surrounding areas, the low melting point of gallium used as FIB ion source and the high contact angle of gallium on glassy carbon induces de-wetting of Ga and the subsequent formation of Ga particles. Ultrasonic cleaning can remove over 98% of visible particles. The surface roughness (Ra) of FIB milled areas after cleaning is less than 2 nm.  相似文献   

10.
本文研究了高掺杂Ga对ZnSe:Ga,Cu晶体中深中心光致发光谱带的影响。首次在高掺杂ZnSe:Ga,Cu中观察到了Cu-G带峰值位置随Ga浓度增大向长波方向移动的现象,并把它归因于高浓度的Ga和Cu相互作用,产生了谱峰为5580Å的新发射带,其半高宽(FWHM)大于Cu-G谱带的半高宽。此外还得到,随着Cu浓度增加,Cu-G带与Cu-R带强度之比减小。文中指出,Ga浓度较低时,ZnSe:Ga,Cu晶体与ZnSe:Cu晶体有相同的Cu深中心发射规律,即随着Cu浓度增大,Cu-G带与Cu-R带的强度比增大,由Cu-R发射带占优势逐渐过渡到Cu-G发射带占优势。  相似文献   

11.
The thin films of zinc oxide have been produced by the pulse laser deposition method at various levels of gallium and nitrogen doping. To obtain the n-type films we used gallium doping with concentration of gallium from zero up to 5 at %. The dependence of photoluminescence of the epitaxial ZnO:Ga films on the concentration of gallium doping has been studied. An optimum range of the n-type ZnO films doping with gallium has been determined to obtain highly effective films from the viewpoint of realizing p-n transitions. This range, on the one hand, defines the maximal PL amplitude and, on the other hand, specifies the minimal specific resistance that corresponds to an interval of 0.125–1.000 at % Ga. To produce the p-type ZnO:(Ga, N) films, the ZnO targets with the content of GaN from zero up to 2 at % were used. N2O was used as a buffer gas. A difference is observed in the positions of the peaks of the emission lines of the photoluminescence spectra for the ZnO films, doped with gallium (Ga) and co-doped with gallium and nitrogen (N).  相似文献   

12.
In the last decade, magic angle spinning (MAS) NMR has become an extremely important method for studying the structure of inorganic solids. Advances in NMR technology have greatly aided in understanding the structure of catalysts, minerals, clays, ceramics, glasses, etc. Obtaining meaningful MAS spectra of spin-1/2 nuclei such as29Si and31P is relatively straightforward and well understood. In contrast, obtaining meaningful MAS spectra is far from simple with non-integral spin quadrupolar nuclei such as11B (I=3/2),17O (I=5/2),23Na (I=3/2),27Al (I=5/2),69Ga (I=3/2), and71Ga (I=3/2)?to name some of the most commonly studied nuclei. Many additional factors have to be considered. This paper will deal with these factors and the utility of very fast MAS for studying non-integral spin quadrupolar nuclei in inorganic solids.  相似文献   

13.
Two-dimensional 27Al multiple-quantum magic angle spinning (MQMAS) NMR experiments are used to study mixtures of bayerite (alpha-Al(OH)3) with either silicic acid (SiO2.nH2O) or silica gel (SiO2) that have been ground together for varying lengths of time. This mechanical treatment produces changes in the 27Al MAS and MQMAS NMR spectra that correspond to the formation of new Al species. Mean values of the quadrupolar interaction (PQ) and isotropic chemical shift (deltacs) are extracted from the two-dimensional 27Al NMR spectra for each of these species. The presence of significant distributions of both 27Al quadrupolar and chemical shift parameters is demonstrated and the effect of grinding duration on the magnitudes of these distributions is discussed.  相似文献   

14.
Ga–Pb alloys with 15 at% Pb mean concentration have been prepared at the nanoscale by means of evaporation-condensation technique in ultra high vacuum conditions. Transmission electron microscope images indicate that at room temperature, the system is a two-components breath figure composed of liquid Ga nanodrops containing Pb nanocrystals. Some thermodynamic properties of this nano-alloy are investigated for different temperatures and particle sizes. The results obtained put in evidence a large modification of the Ga–Pb bulk phase diagram: a decrease of the melting temperatures of the two components as well as the ones of the miscibility gap. Changes in the microscopic structure of the system as a function of temperature have been investigated and a full wetting transition from a dry to a completely wet state has been put in evidence.  相似文献   

15.
Solid state 47,49Ti, 137Ba, 87Sr NMR spectra have been recorded on BaxSr1−xTiO3 (0 x 1) perovskite samples prepared by the powder sintering method. Multinuclear solid state NMR shows great potential for characterising such systems since the quadrupolar parameters are very sensitive to any geometric deformation around the studied nucleus. 47,49Ti NMR powder lineshapes appear strongly influenced by the presence of even a small amount of barium (or strontium) in the coordination second sphere of the probed titanium site: substitution of strontium by barium induces the broadening of the peaks, due to quadrupolar effects, while the isotropic chemical shift increases. 137Ba NMR spectra exhibit a distribution of the quadrupolar interaction, that could be tentatively quantified, CQ increasing with the amount of strontium. Preliminary results were also obtained on 87Sr NMR showing behaviour comparable to 137Ba NMR, i.e. a broadening of the peaks due to an increasing quadrupolar interaction with the amount of barium distorting the environment of the strontium sites.  相似文献   

16.
Three cis-dioxovanadium(V) complexes with similar N-salicylidenehydrazide ligands modeling hydrogen bonding interactions of vanadate relevant for vanadium haloperoxidases are studied by (51)V solid-state NMR spectroscopy. Their parameters describing the quadrupolar and chemical shift anisotropy interactions (quadrupolar coupling constant C(Q), asymmetry of the quadrupolar tensor eta(Q), isotropic chemical shift delta(iso), chemical shift anisotropy delta(sigma), asymmetry of the chemical shift tensor eta(sigma) and the Euler angles alpha, beta and gamma) are determined both experimentally and theoretically using DFT methods. A comparative study of different methods to determine the NMR parameters by numerical simulation of the spectra is presented. Detailed theoretical investigations on the DFT level using various basis sets and structural models show that by useful choice of the methodology, the calculated parameters agree to the experimental ones in a very good manner.  相似文献   

17.
Thulium iron garnet thin films substituted with bismuth and gallium were prepared by LPE from a PbO.B2O3 flux. Radioactive isotope tracers were added to the melt as the chemical analysis technique. The deviation from the ratio (Pb+Bi+Tm)/(Fe+Ga)=0.6 of the layers was large and a proportion of the thulium ions possibly lie on the octahedral crystallographic sites. The concentration of Bi, Pb, and Ga as a function of the growth temperature was studied. The magneto-optic properties show that the layers are well suited for use in a magneto-optic device. A figure of merit of 2.5 degree per decibel at λ=560 nm was obtained and some magnetic bubble parameters are also presented.  相似文献   

18.
We derive an effective Hamiltonian for Ga(1-x)Mn(x)As in the dilute limit, where Ga(1-x)Mn(x)As can be described in terms of spin F=3/2 polarons hopping between the Mn sites and coupled to the local Mn spins. We determine the parameters of our model from microscopic calculations. Our approach treats the large Coulomb interaction in a nonperturbative way, captures the effects of spin-orbit coupling and disorder, and is appropriate for other p-doped magnetic semiconductors.  相似文献   

19.
Optimizing STMAS     
The 2D satellite transition magic angle spinning (STMAS) experiment generates efficiently high-resolution isotropic NMR spectra of half-integer quadrupolar nuclei. The experiment involves excitation and coherence transfer of satellite transitions into the central transition. It requires efficient refocusing of satellite transitions and sample spinning at a very accurate magic angle to cancel the first-order quadrupolar interaction effect. A review of all parameters relevant to optimizing the STMAS experiment is presented, including pulse sequence calibration, regulating spinning speed, magic angle adjustment, optimization of satellite transition excitation, and coherence transfer for both I = 3/2 and I > or =5/2 nuclei.  相似文献   

20.
通过近年来NMR技术在两亲分子聚集体研究中的应用实例,特别在弛豫时间、自扩散系数测定、谱线宽度、化学位移等方面取得的研究结果,对确定的两亲分子聚集性质、聚集体结构和聚集体性质的研究进行了较为详细的介绍.主要侧重点在于介绍1HNMR、13CNMR、19FNMR及2H四极分裂谱等技术在两亲分子聚集体结构及结构演变研究中的应用,特别在胶束、囊泡和微乳液结构确定上的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号