首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 704 毫秒
1.
Difficulties associated with the integration of liquids into a UHV environment make surface-science style studies of mineral dissolution particularly challenging. Recently, we developed a novel experimental setup for the UHV-compatible dosing of ultrapure liquid water and studied its interaction with TiO2 and Fe3O4 surfaces. Herein, we describe a simple approach to vary the pH through the partial pressure of CO2 ( ) in the surrounding vacuum chamber and use this to study how these surfaces react to an acidic solution. The TiO2(110) surface is unaffected by the acidic solution, except for a small amount of carbonaceous contamination. The Fe3O4(001)-( × )R45° surface begins to dissolve at a pH 4.0–3.9 ( =0.8–1 bar) and, although it is significantly roughened, the atomic-scale structure of the Fe3O4(001) surface layer remains visible in scanning tunneling microscopy (STM) images. X-ray photoelectron spectroscopy (XPS) reveals that the surface is chemically reduced and contains a significant accumulation of bicarbonate (HCO3) species. These observations are consistent with Fe(II) being extracted by bicarbonate ions, leading to dissolved iron bicarbonate complexes (Fe(HCO3)2), which precipitate onto the surface when the water evaporates.  相似文献   

2.
Silica matrices hosting transition metal guest complexes may offer remarkable platforms for the development of advanced functional devices. We report here the elaboration of ordered and vertically oriented mesoporous silica thin films containing covalently attached tris(bipyridine)iron derivatives using a combination of electrochemically assisted self-assembly (EASA) method and Huisgen cycloaddition reaction. Such a versatile approach is primarily used to bind nitrogen-based chelating ligands such as (4-[(2-propyn-1-yloxy)]4’-methyl-2,2’-bypiridine, bpy’) inside the nanochannels. Further derivatization of the bpy’-functionalized silica thin films is then achieved via a subsequent in-situ complexation step to generate [Fe(bpy)2(bpy’)]2+ inside the mesopore channels. After giving spectroscopic evidences for the presence of such complexes in the functionalized film, electrochemistry is used to transform the confined diamagnetic (S=0) species to paramagnetic (S=1/2) oxidized species in a reversible way, while blue light irradiation (λ=470 nm) enables populating the short-lived paramagnetic (S=2) excited state. [Fe(bpy)2(bpy’)]2+-functionalized ordered films are therefore both electro- and photo-active through the manipulation of the oxidation state and spin state of the confined complexes, paving the way for their integration in optoelectronic devices.  相似文献   

3.
The spectral properties of fluorescent proteins (FPs) depend on the protein environment of the chromophore (CRO). A deeper understanding of the CRO – environment interactions in terms of FPs’ spectral characteristics will allow for a rational design of novel markers with desired properties. Here, we are taking a step towards achieving this important goal. With the time-dependent density functional theory (TDDFT), we calculate one- and two-photon absorption (OPA and TPA) spectra for 5 green FPs (GFPs) and 3 yellow FPs (YFPs) differing in amino acid sequence. The goal is to reveal the roles of: (i) electrostatic interactions, (ii) hydrogen-bonds (h-bonds) and (iii) h-bonds together with distant electrostatic field in absorption spectra tuning. Our results point to design hypothesis towards FPs optimised for TPA-based applications. Both h-bonds and electrostatic interactions co-operate in enhancing TPA cross-section ( ) for the transition in GFPs. Furthermore, it seems that details of h-bonds network in the CRO's vicinity influences response to CRO – environment electrostatic interactions in YFPs. We postulate that engineering FPs with more hydrophilic CRO's environment can lead to greater . We also find that removing h-bonds formed with the CRO's phenolate leads to TPA enhancement for transition to higher excited states than S1. Particularly Y145 and T203 residues are important in this regard.  相似文献   

4.
We present, for the first time, how transient changes in the coordination number of zinc ion affects the rate determining step in the enzyme human carbonic anhydrase (HCA) II. The latter involves an intramolecular proton transfer between a zinc-bound water and a distant histidine residue (His-64). In the absence of time-resolved experiments, results from classical and QM-MM molecular dynamics and transition path sampling simulations are presented. The catalytic zinc ion is found to be present in two possible coordination states; viz. a stable tetra-coordinated state, T and a less stable penta-coordinated state, P with tetrahedral and trigonal bipyramidal coordination geometries, respectively. A fast dynamical inter-conversion occurs between T and P due to reorganization of active site water molecules making the zinc ion more positively charged in state P. When initiated from different coordination environments, the most probable mechanism of proton transfer is found to be deprotonation of the equatorial water molecule from state P and transfer of the excess proton via a short path formed by hydrogen bonded network of active site water molecules. We estimate the rate constant of proton transfer as from P and from T. A quantitative match of estimated kP with the experimental value, ( ) suggests that dynamics of Zn coordination triggers the rate determining proton transfer step in HCA II.  相似文献   

5.
Understanding and optimizing single particle rate behaviour is normally challenging in composite commercial lithium-ion electrode materials. In this regard, recent experimental research has addressed the electrochemical Li-ion intercalation in individual nanosized particles. Here, we present a thorough theoretical analysis of the Li+ intercalation voltammetric behaviour in single nano/micro-scale LiMn2O4 (LMO) particles, incorporating realistic interactions between inserted ions. A transparent 2-dimensional zone diagram representation of kinetic-diffusional behaviour is provided that allows rapid diagnosis of the reversibility and diffusion length of the system depending on the particle geometry. We provide an Excel file where the boundary lines of the zone diagram can be rapidly recalculated by setting input values of the rate constant, and diffusion coefficient, . The model framework elucidates the heterogeneous behaviour of nanosized particles with similar sizes but different shapes. Hence, we present here an outlook for realistic multiscale modelling of real materials.  相似文献   

6.
Rate constants for the reactions of muonium (Mu) (the ultralight isotope of the hydrogen atom) with H2O2 in H2O and D2O2 in D2O have been determined at various temperatures and pH (pD) values. The data are consistent with the three reactions: , , and the equivalent for the deuterated entities. A significant positive H/D isotope effect was found for the undissociated peroxide, while for the anions the effect was negligible or slightly in the opposite direction. In addition, for concentrated solutions of peroxide a study of the muon spin polarization as a function of applied transverse magnetic field yielded results consistent with the rate constants determined from the direct decay measurements, and indicated that the reaction products are diamagnetic, most likely MuH and MuOH, i. e., no muoniated radical products are formed. These results are potentially relevant for management of the radiolysis products in nuclear industry.  相似文献   

7.
Unveiling reaction mechanisms by isomer-selective detection of reactive intermediates requires advanced spectroscopic knowledge. We study the photoionization of fulvenone (c-C5H4=C=O), a reactive ketene species relevant in catalytic pyrolysis of lignin, which was generated by pyrolysis of 2-methoxy acetophenone. The high-resolution threshold photoelectron spectrum (TPES) with vacuum ultraviolet synchrotron radiation revealed well-resolved vibrational transitions, assigned to ring deformation modes of the cyclopentadiene moiety. The adiabatic ionization energy was determined to be 8.25±0.01 eV and is assigned to the 2A21A1 transition. A broad and featureless band arising at 9 eV is associated with the 2B11A1 excitation. A conical intersection is responsible for the ultrafast relaxation of the fulvenone cation from the into the state resulting in a featureless and lifetime broadened band. These insights will increase the detection capabilities for fulvenone and thereby help to elucidate reaction mechanisms in lignin catalytic pyrolysis.  相似文献   

8.
The odd–even effect in luminescent [Eu2(L)3(H2O)x]⋅y(H2O) complexes with aliphatic dicarboxylate ligands (L: OXA, MAL, SUC, GLU, ADP, PIM, SUB, AZL, SEB, UND, and DOD, where x=2–6 and y=0–4), prepared by the precipitation method, was observed for the first time in lanthanide compounds. The final dehydration temperatures of the Eu3+ complexes show a zigzag pattern as a function of the carbon chain length of the dicarboxylate ligands, leading to the so-called odd-even effect. The FTIR data confirm the ligand–metal coordination via the mixed mode of bridge–chelate coordination, except for the Eu3+-oxalate complex. XRD results indicate that the highly crystalline materials belong to the monoclinic system. The odd–even effect on the 4 f–4 f luminescence intensity parameters (Ω2 and Ω4) is explained by using an extension of the dynamic coupling mechanism, herein named the ghost-atom model. In this method, the long-range polarizabilities ( ) were simulated by a ghost atom located at the middle of each ligand chain. The values of were estimated using the localized molecular orbital approach. The emission intrinsic quantum yield ( ) of the Eu3+ complexes also presented an the odd-even effect, successfully explained in terms of the zigzag behavior shown by the Ω2 and Ω4 intensity parameters. Luminescence quenching due to water molecules in the first coordination sphere is also discussed and rationalized.  相似文献   

9.
SO2 has been proposed in solar geoengineering as a precursor of H2SO4 aerosol, a cooling agent active in the stratosphere to contrast climate change. Atmospheric ionization sources can ionize SO2 into excited states of , which quickly reacts with trace gases in the stratosphere. In this work we explore the reaction of with excited by tunable synchrotron radiation, leading to ( ), where H contributes to O3 depletion and OH formation. Density Functional Theory and Variational Transition State Theory have been used to investigate the dynamics of the title barrierless and exothermic reaction. The present results suggest that solar geoengineering models should test the reactivity of with major trace gases in the stratosphere, such as H2 since this is a relevant channel for the OH formation during the nighttime when there is not OH production by sunlight. OH oxides SO2, triggering the chemical reactions leading to H2SO4 aerosol.  相似文献   

10.
Small perfluorocycloalkanes (hexafluorocyclopropane (c-C3F6), octafluorocyclobutane (c-C4F8) and decafluorocyclopentane (c-C5F10) and cage-shaped perfluoroalkanes (perfluoro tetrahedral alkane (C4F4), perfluoro prismane (C6F6) and perfluoro cubane (C8F8)) are better electron scavengers. The captured excess electrons are weakly bound inside their backbone voids or over their backbones, forming the solvated electron ( ) systems (e@c-CnF2ns (n=3, 4, 5) and e@CnFn (n=4, 6, 8)). There have been many studies on the structures and properties of such systems. However, the effect of on the indirect nuclear spin-spin coupling (J-coupling) is unknown. In this work, we explore how affects NeJ-coupling between two coupled F nuclei (NeJFF-coupling) in perfluoroalkane systems through density functional theory calculations. We find unusual trans-NeJFF-couplings (two coupled F nuclei in trans-position) in e@c-CnF2n (n=3, 4, 5) and NeJFF-couplings in e@CnFn (n=4, 6, 8). One excess electron not only changes the molecular structures, but also enforces unique distributions and properties, depending on the structural characteristics. We also confirm that such unusual NeJFF-couplings are realized by through- (T-SE) transmission mechanism, rather than the conventional through-bonds (T−B)/through-space (T−S) ones. The novel transmission mechanism consists of the T-SE coupling path (path 1) and -enhanced T−B T−S coupling path (path 2), and the two paths jointly control NeJFF through cooperation and competition. Interestingly, the former plays a dominant role for long-range NeJFF-coupling (N=5), while the latter plays a role in the short-range NeJFF-coupling (N=3, 4). Path bending angle mainly influences path 1, while path 2 is mainly influenced by the path length. This work not only provides novel insights into the mediating role of in the coupling information exchange, but also proposes a new -based coupling mechanism, possibly opening up potential applications for the -based indirect nuclear spin couplings.  相似文献   

11.
Chirality is a very important characteristic of optically active molecules and polyaromatics with helical structures, and plays a vital role in various applications in material science. In the present work, we show the effects of fluorine substitution at various positions in a figure-8-shaped [5]helicene dimer on the ground and excited state g-factors. Calculations for the ground and excited states are performed at the MP2 and ADC(2) levels of theory, respectively. The results reveal that fluorination has a large effect on the excited state structures. The values of the excited state dissymmetry factors for the molecules with fluorinations at both ends of the figure-8 systems are smaller than that of the parent system. On the other hand, fluorinations only in the stacked-phenyl region results in an increase in the value of . The perfluorinated system shows the smallest .  相似文献   

12.
Molecular hydrogen has unique nuclear spin properties. Its nuclear spin isomer, parahydrogen (pH2), was instrumental in the early days of quantum mechanics and allows to boost the NMR signal by several orders of magnitude. pH2-induced polarization (PHIP) is based on the survival of pH2 spin order in solution, yet its lifetime has not been investigated in aqueous or biological media required for in vivo applications. Herein, we report longitudinal relaxation times (T1) and lifetimes of pH2 ( ) in methanol and water, with or without O2, NaCl, rhodium-catalyst or human blood. Furthermore, we present a relaxation model that uses T1 and for more precise theoretical predictions of the H2 spin state in PHIP experiments. All measured T1 values were in the range of 1.4–2 s and values were of the order of 10–300 minutes. These relatively long lifetimes hold great promise for emerging in vivo implementations and applications of PHIP.  相似文献   

13.
The hyperlithiated species (k=1, 2, 3, and 4) have been studied by quantum mechanical (QM) methods. Different structures have been localized for each molecule by the CBS-QB3 composite method: all the isomers show superalkali properties and strong tendency to donate an electron to carbon dioxide forming stable complexes. With the aim to find molecular systems able to stabilize superalkalis, geometries of complexes between superalkalis and pyridine and superalkalis and graphene surfaces doped with a pyridinic vacancy were calculated. The pyridinic graphene sheets were modeled with two finite molecular systems C69H21N3 and C117H27N3. The interaction with one pyridine molecule is quite weak and the superalkali maintains its structure and electron properties. The affinity for graphene sheets is instead stronger and the superalkalis tend to deform their geometry to better interact with the graphene surface. However, the superalkalis continue to show the tendency to transfer electrons to carbon dioxide reducing CO2, as found in graphene absence.  相似文献   

14.
Symmetry breaking of parahydrogen using iridium catalysts converts singlet spin order into observable hyperpolarization. In this contribution, iridium catalysts are designed to exhibit asymmetry in their hydrides, regulated by in situ generation of deuterated ammonia governed by ammonium buffers. The concentrations of ammonia (N) and pyridine (P) provide a handle to generate a variety of stereo-chemically asymmetric N-heterocyclic carbene iridium complexes, ligating either [3xP], [2xP;N], [P;2xN] or [3xN] in an octahedral SABRE type configuration. The non-equivalent hydride positions, in correspondence with the ammonium buffer solutions, enables to extend singlet-triplet or mixing at high magnetic field and experimentally induce prolonged generation of non-equilibrium longitudinal two-spin order. This long-lasting magnetization can be exploited in hyperpolarized 2D-OPSY-COSY experiments providing direct structural information on the catalyst using a single contact with parahydrogen. Separately, field cycling revealed hyperpolarization properties in low-field conditions. Controlling catalyst stereochemistry by introducing small and deuterated ligands, such as deuterated ammonia, simplifies the spin-system. This is shown to unify experimental and theoretically derived field-sweep experiments for four-spin systems.  相似文献   

15.
16.
17.
Mechanochromic luminescent materials, exhibiting a change in luminescence behavior under external stimuli have emerged as one of the promising candidates for upcoming efficient OLEDs. Recently mechanochromic luminescence was reported in a donor-acceptor-donor (D-A-D) triad featuring two phenothiazine units separated by a dibenzo[a,j]phenazine motif. The triad follows different emissive routes ranging from phosphorescence to TADF based on the conformational switching of the D units. In this article, we investigate such conformation-dependent photophysical behavior of this triad through theoretical calculations. By analyzing the nature of ground state, excited state and factors determining the reverse ISC crossing rates associated with the relative orientation of the D and A units, we delineate the effect of the conformational changes on their photophysical properties. Our findings reveal that axial orientation of both the donor groups enhances the overlap between HOMO and LUMO leading to a large singlet-triplet gap ( ) which drives phosphorescence emission. On the contrary, the equatorial orientation of the donor groups minimizes to facilitate rISC making the conformers TADF active. The role of several geometric factors affecting the photophysical properties of the conformers is also highlighted. Finally, we show how to regulate the population difference among the conformers by functionalizing the triad to harvest the maximum TADF efficiency.  相似文献   

18.
We defined four major deterioration factors (electrolyte loss (EL), lithium loss (LL), lithium precipitation (LP), and compound deterioration (CD)). Then, we derived eleven key performance indicators (KPIs) for comparative analysis. After that, we fabricated three deteriorated cells for each of three deterioration factors (EL, LL, and LP) and one cell with CD (for verification) with four individual (dis)charging experiment manuals. The two major contributions of this study are the performance of 1) trend analysis to determine a suitable diagnostic metric by inspecting the eleven KPIs and 2) comparison analysis of and to verify the effectiveness of utilizing as a real-time deterioration diagnostic factor using a concept of model-in-the-loop simulation. The results show that 1) has the most conspicuous trendline tendency among the eleven comparison targets for all four major deterioration factors, and 2) the angle difference between the two trends of and lies within a minimum of 9° and a maximum of 43° (with a sscale on the x-axis and a scale on the y-axis for a clear trend line analysis). From this, we can conclude that the trendline-based real-time deterioration analysis employing may be practically applicable to a limited extent.  相似文献   

19.
Interacting Quantum Atoms (IQA) and Interacting Quantum Fragments (IQF) analyses are used to study (X=Cl and Br) model complexes in order to determine the origin of halogen bond directionality. IQA allows for the calculation of intra- and interatomic classical and exchange-correlation energies, which can be used to determine the energetic nature of the changes that occur when deviating from the preferred halogen bond approach. The Relative Energy Gradient (REG) method is also applied to rank the IQA energies and reveal which energy contributions best describe the total behavior of the system. Indeed, all the pairwise interactions and atomic self-energies are angularly dependent; some terms favor the linear structure and some tend toward nonlinear arrangements. For instance, when the C−X−N angle is altered, the halogen-nitrogen interaction energy behaves like the total energy of the system while the carbon-nitrogen interaction works against the total energy profile. Furthermore, the REG values reveal that the contribution of the halogen-nitrogen interaction to the total behavior of the system is small. Instead, the secondary interactions (e. g., fluorine-nitrogen and carbon-hydrogen interactions) and atomic self-energies are mainly responsible for the angular preference of these halogen bonds. Finally, IQF calculations followed by REG analysis reveal the importance of the self-energy of the fragments.  相似文献   

20.
Inorganic perovskite CaMnO was proposed as a substitution for the TiO anatase in electron transport layers of solar cells containing the hybrid perovskite CH NH PbI based on increased mobility of electrons and better optical matching. Due to a suitable band gap concerning the absorption of sunlight, we investigate the potential of CaMnO and similar manganite perovskites, where Ca is replaced by either Sr, Ba or La, as an absorber layer in inorganic perovskite solar cells. In this study, we have used optical measurements on the synthesized AMnO (A=Ca, Sr, Ba, La) samples to aid density functional theory calculations (DFT) in order to accurately simulate the electronic and optical properties of AMnO compounds and gauge their potential for the role of absorber layer. Both experimental measurements and theoretical calculations show suitable band gap of 1.1-1.5 eV, depending on the compound, and absorption coefficients of the order of cm in the visible part of the spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号