首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
New copper (II) complexes of Schiff bases with 1,2-di(imino-2-aminomethylpyridil)ethane with the general composition CuLX m (H2O) x , [L = Schiff base, X = Cl?, Br?, NO3 ?, ClO4 ?, CH3COO?, m = 2; X = SO4 2?, m = 1] were prepared by template synthesis. The complexes were characterized by elemental analysis, conductivity measurements, magnetic moments, IR, UV–VIS and EPR spectra. The thermal behavior of complexes was studied using thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Infrared spectra of all complexes are in good agreement with the coordination of a neutral tetradentate N4 ligand to the cooper (II) through azomethinic and pyridinic nitrogen. Magnetic, EPR and electronic spectral studies show a monomeric distorted octahedral geometry for all Cu(II) complexes. Conductance measurements suggest the non-electrolytic nature of the compounds, except for copper (II) nitrate and perchlorate complexes which are 1:2 electrolytes. Heats of decomposition, ΔH, associated with the exothermal effects were also determined.  相似文献   

2.
In this study, a new bidentate Schiff base ligand (L) entitled as N,N’-bis(dimethylaminocinnamaldehyde)-2,2-dimethyl-1,3-propanediamine and its mercury complexes were synthesized. The Schiff base ligand and its complexes were characterized using FT-IR, 1H-, 13C-NMR spectroscopy, molar conductivity and electronic spectral study. Regarding physical and spectral data, the general formula for the complexes was suggested as HgLX2 (L = Schiff base ligand and X = Cl?, Br?, I?, SCN?, N3 ?). For structural identification of these complexes, crystal structure of mercury iodide complex was analyzed as typical one. In the structure of this complex, Hg ion is surrounded by 2 iodide ions and 2 N atoms from the Schiff base ligand to form a four-coordinated mercury complex in triclinic system with space group of P 1. Angular index (τ 4) value was evaluated equal to 0.85, so the geometry around the mercury ion in this complex can be described as trigonal pyramid. A layered supramolecular structure for HgLI2 complex is stabilized by C–H···I and C–H···π interactions in solid state. DFT study on the ligand and its complexes was also carried out, and then some calculated and experimental structural parameters of HgLI2 were compared. Thermal behaviors of the titled compounds were investigated by thermogravimetric analyses. Furthermore, biological properties of the ligand and its complexes were examined against some Gram-negative and Gram-positive bacteria and also against 2 fungi. Finally, the interaction of the ligand and its complexes with DNA was investigated by electrophoresis method.  相似文献   

3.
The 1:1 condensation of N-methyl-1,3-diaminopropane and N,N-diethyl-1,2-diminoethane with 2-acetylpyridine, respectively at high dilution gives the tridentate mono-condensed Schiff bases N-methyl-N′-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L1) and N,N-diethyl-N′-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine (L2). The tridentate ligands were allowed to react with methanol solutions of nickel(II) thiocyanate to prepare the complexes [Ni(L1)(SCN)2(OH2) (1) and [{Ni(L2)(SCN)}2] (2). Single crystal X-ray diffraction was used to confirm the structures of the complexes. The nickel(II) in complex 1 is bonded to three nitrogen donor atoms of the ligand L1 in a mer orientation, together with two thiocyanates bonded through nitrogen and a water molecule, and it is the first Schiff base complex of nickel(II) containing both thiocyanate and coordinated water. The coordinated water initiates a hydrogen bonded 2D network. In complex 2, the nickel ion occupies a slightly distorted octahedral coordination sphere, being bonded to three nitrogen atoms from the ligand L2, also in a mer orientation, and two thiocyanate anions through nitrogen. In contrast to 1, the sixth coordination site is occupied by a sulfur atom from a thiocyanate anion in an adjacent molecule, thus creating a centrosymmetric dimer. A variable temperature magnetic study of complex 2 indicates the simultaneous presence of zero-field splitting, weak intramolecular ferromagnetic coupling and intermolecular antiferromagnetic interactions between the nickel(II) centers.  相似文献   

4.
The reactions of different nickel(II) salts with a mixed‐donor macrocyclic ligand L (6,7,8,9,10,11,18,19‐octahydro‐5H, 17H‐dibenzo[f,o][1,5,9,13] dioxadiazacyclohexadecin‐18‐ol), potentially pentadentate N2O3 donor sets containing one pendant alcohol function have been investigated. The physical properties and the chemical structures of 1:1 (metal:ligand) NiLX2 (X = Cl?, Br?, NO3?, ClO4?) complexes have been characterized by using IR, UV‐Vis spectroscopy and conductance measurements. The X‐ray determination have been employed to probe the nature of the respective complexes in solid state. The nickel atom in [NiL(NO3)]NO3·0.5H2O complex is six‐coordinate with a distorted octahedral coordination in which the all N2O3 donor atoms are coordinated to the nickel atom. The coordination sphere is completed by a nitrate anion. In contrast to the above nickel complex, in [NiLCl2] complex the pendant hydroxyl arm of macrocycle remains uncoordinated and ligand acts as tetradentate N2O2 donor atoms. The coordination sphere is completed by two chloride anions and the nickel atom is six‐coordinate with a distorted octahedral coordination.  相似文献   

5.
Co(II), Ni(II) and Cu(II) chloro complexes of benzilic hydrazide (BH) have been synthesized. Also, reaction of the ligand (BH) with several copper(II) salts, including NO3 ?, AcO?, and SO4 ? afforded metal complexes of the general formula [CuLX(H2O) n nH2O, where X is the anion and n = 0, 1 or 2. The newly synthesized complexes were characterized by elemental analysis, mass spectra, molar conductance, UV–vis, IR spectra, magnetic moment, and thermal analysis (TG/DTG). The physico-chemical studies support that the ligand acts as monobasic bidentate towards metal ion through the carbonyl and hydroxyl oxygen atoms. The spectral data revealed that the geometrical structure of the complexes is square planar for Cu (II) complexes and tetrahedral for Co(II) and Ni(II) complexes. Structural parameters of the ligand and its complexes have been calculated. The ligand and its metal complexes are screened for their antimicrobial activity. The catalytic activities of the metal chelates have been studied towards the oxidative decolorization of AB25, IC and AB92 dyes using H2O2. The catalytic activity is strongly dependent on the type of the metal ion and the anion of Cu(II) complexes.  相似文献   

6.
Mononuclear silver and mercury complexes bearing bis-N-heterocyclic carbene (NHC) ligands with linear coordination modes have been prepared and structurally characterised. The complexes form metallocyclic structures that display rigid solution behaviour. A larger metallocycle of the form [L2Ag2]2+ [where L = para-bis(N-methylimidazolylidene)xylylene] has been isolated from the reaction of para-xylylene-bis(N-methylimidazolium) chloride and Ag2O. Reaction of silver- and mercury-NHC complexes with Pd(NCCH3)2Cl2 affords palladium-NHC complexes via NHC-transfer reactions, the mercury case being only the second example of a NHC-transfer reaction using a mercury-NHC complex.  相似文献   

7.
Reaction of a ligand N-(3,5-di-2-pyrazinyl-4H-1,2,4-triazol-4-yl)-2-pyrazinecarboxamide (Hpztp) with CuSO4 and Cu(acac)2 (acac = acetylacetonate), respectively, yields two distinct CuII coordination polymers {[Cu3(pztp)2(SO4)2(H2O)2]·3H2O} n and {[Cu(pztp)(acac)]·0.5H2O} n . Both complexes have been structurally determined and also characterized by physicochemical and spectroscopic methods. The results reveal that by using different anions (SO4 2? versus acac?), the dimensionality (from 2D to 1D) of the resulting coordination architectures as well as conformations and binding fashions of the pztp ligand are significantly changed. That is to say, the selection of anions will play a key role in inducing the formation of the crystalline materials. The thermal stabilities of both complexes have also been explored and discussed.  相似文献   

8.
The Schiff base NN′-ethylenebis(salicylideneimine), H2 salen reacts with hydrous and anhydrous Zinc, Cadmium and Mercury(II) salts to give complexes M(H2 salen)X2·nH2O (M = Zn, Cd, Hg; XCl, Br, I, NO3; MZn, X2SO4; n = 0?2). Spectroscopic and other evidence indicated that; (i) halide and sulphate are coordinated to the metal ion, whereas the nitrate group is ionic in mercury nitrate compound and covalently bonded in zinc and cadmium nitrato complexes, (ii) the Schiff base is coordinated through the negatively charged phenolic oxygen atoms and not the nitrogen atoms, which carry the protons transferred from phenolic groups on coordination, (iii) therefore the coordination numbers suggested are 4-, in mercury and 4- or 6- in zinc and cadmium Schiff base complexes.  相似文献   

9.
Seven Zn(II) and Cd(II) complexes of ON donor acetone-N(4)-phenylsemicarbazone (HL) have been synthesized and physico-chemically characterized by partial elemental analyses, molar conductance measurements, infrared, electronic and 1H NMR spectral studies. The semicarbazone binds the metal as a neutral bidentate ligand in all the complexes. The crystal structures of acetone-N(4)-phenylsemicarbazone and [Cd(HL)2Cl2] have been determined by X-ray diffraction studies. The coordination geometry around cadmium(II) in the complex [Cd(HL)2Cl2] is distorted octahedral.  相似文献   

10.
The Cu(II) and Co(II) complexes with 3,5-diphenyl-4-amino-1,2,4-triazole (L) of the composition CuLA2 · H2O (A = Cl?, Br?), CuL2A2 (A = Cl?, Br?, NO 3 ? ), CoL2A2 · nH2O (A = Cl?, n = 1; A = NCS?, n = 0) are synthesized. In these complexes, the ligand L is coordinated to a metal in monodentate mode through the heterocyclic N(1) atom. The Cu: L = 1: 1 complexes have binuclear structures with the anions acting as bridges, whereas the M: L = 1: 2 complexes are mononuclear. Both ferro-and antiferromagnetic exchange interactions are detected for the synthesized complexes.  相似文献   

11.
A tetradentate N-donor ligand 1,4-bis[2-(2-pyridyl)benzimidazolato]butane (L) was prepared for construction of a coordination framework. Three one-dimensional coordination polymers {[M(II)L(NCS)2](DMF)2} n (M(II) = cadmium(II), 1, zinc(II), 2, manganese(II), 3) were obtained by reaction of metal ions and L in the presence of KSCN in DMF/water. The complexes are isostructural and consist of 1D zigzag [M(II)L(NCS)2] n chains and DMF molecules. Within the chains, the metal atoms are each octahedrally coordinated by four N atoms of L and two N atoms of the SCN? anions. Complexes 1 and 2 in the solid state at room temperature exhibit intense photoluminescence at 453 and 433 nm, respectively.  相似文献   

12.
Some cobalt(II) complexes of 4,6-dimethylpyrimidine-2(1H)-one (HL) have been prepared and studied by infrared and electronic spectra and by magneto-chemical and conductometric measurements. The ligand is coordinated through the unprotonated ring-nitrogen atom and in one case also through the carbonylic oxygen atom. The “blue” complexes [CoX2 · 2HL] (X2 = Cl2, ClBr, Br2, (NCS)2) and [CoX2 · 2HL] · 2HL (X = Cl, Br) have a distorted C2v [CoX2N2] coordination; the thiocyanate ion is N-bonded to the metal. The “green” complexes CoX2 · 2HL (X = Cl(4H2O), Br) have a square-pyramidal [CoX2N2O] coordination. The “pink” CoX2 · 4HL · nH2O (X = ClO4, n = 2; X = BF4, n = 8; X = F3Ac, n = 4) and “cream” CoX2 · 4HL · 6 H2O (X = I, ClO4) complexes have an octahedral coordination; only the F3Ac? ion is coordinated. The “cyclamen” CoAcL · 2HL · 2 H2O and Co3Ac4L2 · 2HL · 2H2O complexes have a polynuclear constitution; the Ac? ion behaves as bidentate ligand.  相似文献   

13.
The crystal structures of the well-known complexes, [(Me4en)M(II)X2] (Me4en?=?N,N,N??,N??-tetramethylethylenediamine; M(II)?=?Pd(II) or Pt(II); X ??=?NO2 ? or NO3 ?) have been determined. For [(Me4en)Pd(NO2)2] and [(Me4en)Pt(NO2)2], the nitrite anion acts as a monodentate N-donor ligand in the solid state. In contrast, for [(Me4en)Pd(ONO2)(O2NO)], the two nitrate anions act as a monodentate O-donor (ONO2) and a bidentate O,O??-donor (O2NO). Recrystallization of [(Me4en)Pt(NO3)2] from Me2SO yields the Me2SO adduct with a monodentate O-donor nitrate and a counteranionic nitrate, [(Me4en)Pt(ONO2)(S-Me2SO)](NO3). The solution behavior of these complexes, including the equilibrium between coordinated and free Me2SO, has been investigated.  相似文献   

14.
Heats of formation of MeI+, MeI2, MeI3? and MeI42? where Me2+, Cd2+ or Hg2+ were determined in acidic solutions by flow microcalorimetry. Some gaps in the literature data were filled. In particular, ΔH3 for the mercury(II) complex was determined and the ΔH1, ΔH2 + ΔH3, ΔH4 for zinc(II) complexes were measured in sodium free solutions to avoid ionic couple formation. For cadmium(II) complexes, existing data were confirmed. Thermodynamic functions are discussed in term of hard/soft interactions.  相似文献   

15.
Three mercury(II) complexes, [Hg((23-MeO-ba)2en)X2] (X = I (1), Br (2) and Cl(3)), and the ligand (23-MeO-ba)2en ((23-MeO-ba)2en = N,N′-bis(2,3-dimethoxybenzylidene)-1,2-diaminoethane) have been synthesized and characterized by elemental analyses, FT-IR and 1H NMR spectroscopy. The crystal and molecular structures of 1 and 2 were determined by X-ray crystallography from single-crystal data. The metal-to-ligand ratio was found to be 1:1. The mercury(II) center in 1 and 2 has a distorted tetrahedral geometry with HgN2I2 and HgN2Br2 chromophores, respectively. The Schiff base ligand (23-MeO-ba)2en acts as a chelating ligand, coordinating via the two nitrogen atoms to the mercury(II) center, and it adopts an E,E conformation. The coordination sphere of the mercury(II) center in 1 and 2 is completed by the two I and Br atoms, respectively. In complex 1 an inter-molecular non-classical hydrogen bond of the type C-H?O was found, while in complex 2 inter- and intra-molecular non-classical hydrogen bonds of the type C-H?X (X = O and Br) were found. The 1H NMR spectra of the complexes exhibit downfield as well as upfield shifts of the free ligand resonances, reflecting changes in the ligand’s geometry during its coordination.  相似文献   

16.
Reaction of zinc(II) thiocyanate with pyrazine, pyrimidine, pyridazine, and pyridine leads to the formation of new zinc(II) thiocyanato coordination compounds. In bis(isothiocyanato‐N)‐bis(μ2‐pyrazine‐N,N) zinc(II) ( 1 ) and bis(isothiocyanato‐N)‐bis(μ2‐pyrimidine‐N,N) zinc(II) ( 2 ) the zinc atoms are coordinated by four nitrogen atoms of the diazine ligands and two nitrogen atoms of the isothiocyanato anions within slightly distorted octahedra. The zinc atoms are connected by the diazine ligands into layers, which are further linked by weak intermolecular S ··· S interactions in 1 and by weak intermolecular C–H ··· S hydrogen bonding in 2 . In bis(isothiocyanato‐N)‐bis(pyridazine‐N) ( 3 ) discrete complexes are found, in which the zinc atoms are coordinated by two nitrogen atoms of the isothiocyanato ligands and two nitrogen atoms of the pyridazine ligands. The crystal structure of bis(isothiocyanato‐N)‐tetrakis(pyridine‐N) ( 4 ) is known and consists of discrete complexes, in which the zinc atoms are octahedrally coordinated by two thiocyanato anions and four pyridine molecules. Investigations using simultaneous differential thermoanalysis and thermogravimetry, X‐ray powder diffraction and IR spectroscopy prove that on heating, the ligand‐rich compounds 1 , 2 , and 3 decompose without the formation of ligand‐deficient intermediate phases. In contrast, compound 4 looses the pyridine ligands in two different steps, leading to the formation of the literature known ligand‐deficient compound bis(isothiocyanato‐N)‐bis(pyridine‐N) ( 5 ) as an intermediate. The crystal structure of compound 5 consists of tetrahedrally coordinated zinc atoms which are surrounded by two isothiocyanato anions and two pyridine ligands. The structures and the thermal reactivity are discussed and compared with this of related transition metal isothiocyanates with pyrazine, pyrimidine, pyridazine, and pyridine.  相似文献   

17.
Zinc(II) and mercury(II) thiocyanate complexes with nicotinamide, bis(nicotinamide-N)-bis(thiocyanato-N)zinc(II) (1) and catena-[nicotinamide-N-(μ-thiocyanato-S,N)(thiocyanato-S)mercury(II)] (2), have been prepared and characterized by spectroscopic, thermal and X-ray crystallographic methods. The vibrational bands of diagnostic value are compared to the values of the free ligand and the data are in good correlation with the X-ray results. Centrosymmetrical hydrogen bonded dimers are found, R22(10) in 1 and R22(8) in 2.  相似文献   

18.
Tris[2-(N-ethyl)benzimidazylmethyl]amine (Etntb) and two of its complexes, [Zn(Etntb)(cinnamate)]NO3·2DMF (1) and [Ni(Etntb)(cinnamate)·(H2O)]NO3 (2) have been synthesized and characterized by physico-chemical and spectroscopic methods. Single-crystal X-ray diffraction revealed that the complexes have different structures. In complex 1, the coordination sphere around Zn(II) is distorted trigonal bipyramidal, whereas the coordination sphere around Ni(II) is distorted octahedral in complex 2. The DNA-binding properties of the free ligand and its complexes have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that the ligand and both complexes bind to DNA via an intercalative mode, and their binding affinity for DNA follows the order 1 > 2> ligand.  相似文献   

19.
Five coordination compounds Zn(mbmpbi)2Cl2 (1), Zn(mbmpbi)2Br2 (2), Cd(mbmpbi)2Cl2 (3), Hg(mbmpbi)2Cl2 (4) and Hg(mbmpbi)2Br2 (5) were synthesized by the reaction of 1-(p-methoxybenzyl)-2-(p-methoxyphenyl)benzimidazole (mbmpbi) with the corresponding metal halides. The complexes have been characterized by elemental analysis, conductance measurements, FT-IR, 1H NMR and photoluminescence spectral studies. The ligand mbmpbi exhibits the N-benzimidazole coordination. The structures of 3-5 have been determined by single crystal X-ray diffraction. These three complexes are isostructural, crystallizing in the monoclinic system, P2/n space group with a distorted tetrahedral geometry around the metal ion. Zn(II) and Cd(II) complexes show strong blue emission in solid state at room temperature.  相似文献   

20.
Cadmium(II) complexes of thiones and thiocyanate, [(>C=S)2Cd(SCN)2], have been prepared and characterized by IR and NMR spectroscopy. An upfield shift in the >C=S resonance of thiones in the 13C NMR and downfield shift in N–H resonance in 1H NMR are consistent with sulfur coordination to cadmium(II). The presence of ν(N–H) of thiones in IR spectra of the complexes indicates the thione forms of the ligands in the solid state; some contribution of the thiolate form was observed in one complex. The appearance of a band around 2100 cm?1 in IR and a resonance around 132 ppm in 13C NMR indicates the binding of thiocyanate to cadmium(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号