首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With reference to the example of a modified Taylor flow, the bifurcation of the loss of flow symmetry with the onset of a self-induced pressure gradient is studied theoretically and numerically. A linear analysis shows that the bifurcation is supercritical. It is necessarily accompanied by the appearance of a longitudinal pressure gradient and takes place at values of the parameters for which the solution of the linear system for the perturbations satisfies the condition of zero mass flow. It is established that, as a result of the bifurcation, two asymmetric solutions with oppositely directed pressure gradients are simultaneously generated. In the supercritical region, the symmetric branch of the solutions is also retained but becomes unstable. Bifurcation of the loss of symmetry and a self-induced pressure gradient can occur only in nonlinear systems.  相似文献   

2.
The models of the nonlinear radial flow for the infinite and finite reservoirs including a quadratic gradient term were presented. The exact solution was given in real space for flow equation including quadratic gradiet term for both constant-rate and constant pressure production cases in an infinite system by using generalized Weber transform.Analytical solutions for flow equation including quadratic gradient term were also obtained by using the Hankel transform for a finite circular reservoir case. Both closed and constant pressure outer boundary conditions are considered. Moreover, both constant rate and constant pressure inner boundary conditions are considered. The difference between the nonlinear pressure solution and linear pressure solution is analyzed. The difference may be reached about 8% in the long time. The effect of the quadratic gradient term in the large time well test is considered.  相似文献   

3.
A two-component (air-water) annular flow model is presented requiring only flow rates, absolute pressure, temperature, and tube diameter. Film thicknesses (base film and wave height) are calculated from a critical film thickness model. Modeled pressure gradient is weighted by wave intermittency to compute average pressure gradient. Film flow rate and wave velocity are estimated using the universal velocity profile in the waves and a piecewise linear profile in the base film. For vertical flow, mean absolute errors for film thickness, wave velocity, and pressure gradient are 9%, 9%, and 19%, respectively. In horizontal flow, mean absolute errors for pressure gradient, base film thickness, and disturbance wave velocity are 17%, 10%, and 14%, respectively, on par with those from single-behavior models that require additional film thickness or other data as inputs.  相似文献   

4.
Numerical simulations have been carried out to study pulsatile laminar flows in a pipe with an axisymmetric ringtype constriction. Three types of pulsatile flows were investigated, namely a physiological flow, a pure sinusoidal flow and a non-zero mean velocity sinusoidal flow. The laminar flow governing equations were solved by the SIMPLE algorithm on a non-staggered grid and a modified Crank-Nicolson approximation was used to discretrize the momentum equations with respect to time. The maximum flow Reynolds numer (Re) is 100. The Womersley number (Nw) ranges from 0 to 50, with the corresponding Strouhal number (St) ranging from 0 to 3·98. The constriction opening ratio (d/D) and thickness ratio (h/D) are fixed at 0·5 and 0·1 respectively. Within the time period investigated, all these pulsatile flows include both forward and backward flows. The unsteady recirculation region and the recirculation points change in size and location with time. For Nw ≤ 1 and St≤ 1·56 x 10?3 the three pulsatile flows have the same simple relation between the instantaneous flow rate and pressure loss (Δp) across the constriction and the pressure gradient in the axial direction (dp/dz) in the fully developed flow region. The phase angles between the flow rate and pressure loss and the pressure gradient are equal to zero. With increasing Nw and St, the phase angle between the flow rate and the dp/dz becomes larger and has its maximum value of 90° at Nw = 50 and St = 3·98. The three pulsatile flows also show different relations between the flow rate and the pressure gradient. The pure sinusoidal flow has the largest maximum pressure gradient and the non-zero mean velocity sinusoidal flow has the smallest. For larger Nw and St the fully developed velocity profiles in the fully developed flow region have a smaller velocity gradient along the radial direction in the central region. The maximum recirculation length increases for Nw ranging from 0 to 4·2, while this length becomes very small at Nw = 50 and St = 3·98. The deceleration tends to enlarge the recirculation region and this effect appears for Nw ≥ 3 and St ≥ 1·43×10?2. Linear relations exist between the flow rate and the instantaneous maximum values of velocity, vorticity and shear stress.  相似文献   

5.
We present an analytical solution of axisymmetric motion for a Bingham fluid initially at rest subjected to a constant pressure gradient applied suddenly. Using the Laplace transform, we obtain expressions which allow the calculation of the instantaneous velocity, plug radius and rate of flow as a function of time. We also give a relation for the shear stress in the plug and in the region where the behaviour of the fluid is Newtonian.  相似文献   

6.
Instability of a slip flow in a curved channel formed by two concentric cylindrical surfaces is investigated. Two cases are considered. In the first (Taylor–Couette flow) case the flow is driven by the rotation of the inner cylindrical surface; no azimuthal pressure gradient is applied. In the second case (Dean flow) both cylindrical surfaces are motionless, and the flow is driven by a constant azimuthal pressure gradient. The collocation method is used to find numerically the critical values of the Taylor and Dean numbers, which establish the instability criteria for these two cases. The dependencies of critical values of these numbers on the ratio between the radii of concave and convex walls and on the velocity slip coefficient are investigated.  相似文献   

7.
This article is concerned with general analytic solutions of flows in cylindrical and annular pipes subject to an arbitrary time-dependent pressure gradient and arbitrary steady initial flow. The fluids considered are Newtonian, Maxwellian and Oldroyd B. Graphical results for (blood) flow in a dog’s femoral artery are presented.  相似文献   

8.
A pulsating laminar flow of a viscous, incompressible liquid in a rectangular duct has been studied. The motion is induced under an imposed pulsating pressure difference. The problem is solved numerically. Different flow regimes are characterized by a non‐dimensional parameter based on the frequency (ω) of the imposed pressure gradient oscillations and the width of the duct (h). This, in fact, is the Reynolds number of the problem at hand. The induced velocity has a phase lag (shift) with respect to the imposed pressure oscillations, which varies from zero at very slow oscillations, to 90° at fast oscillations. The influence of the aspect ratio of the rectangular duct and the pulsating pressure gradient frequency on the phase lag, the amplitude of the induced oscillating velocity, and the wall shear were analyzed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
In stratified three-dimensional models the use of a boundary-fitted vertical co-ordinate is known to produce errors in the horizontal pressure gradient calculation near steep topography. The error is due to the splitting of the horizontal pressure gradient term in each of the momentum equations into two parts and the subsequent incomplete cancellation of the truncation errors of those parts. In order to minimize these pressure gradient errors, a fourth-order-accurate pressure gradient calculation has been implemented and installed in SPEM, a three-dimensional primitive equation ocean model. The stability and accuracy of the new scheme are compared with those of the original second-order-accurate model in a series of calculations of unforced flow in the vicinity of an isolated seamount. The new scheme is shown to have much smaller pressure gradient errors over a wide range of parameter space as well as a greater parametric domain of numerical stability.  相似文献   

10.
Summary Nonstationary flow of a viscoplastic medium between two parallel plates is considered for the case of a varying pressure gradient. The problem is reduced to the Stephan problem, with the condition on the boundary separating the flow domain from the quasi-rigid domain. Four multiparameter families of exact solutions are found. The first family describes the flow decelerations up to a full stop. The second family determines the development of the flow from the state of rest as the pressure gradient increases. The third family describes the development of the flow for the case where (1) the pressure gradient is constant and exceeds the threshold value related to the yield stress, (2) the upper plate does not move, and (3) the lower plate moves with a constant acceleration. Finally, the fourth family determines the flow retardation, when the pressure gradient is constant and is less than the threshold value. The decrease in the flow of the viscoplastic medium can be achieved for certain values of parameters by increasing the quasi-rigid domain, whereas the viscoplastic flow remains unchanged. Received 7 October 1998; accepted for publication 8 April 1999  相似文献   

11.
谢明亮  林建忠 《应用力学学报》2007,24(3):I0001-I0015
分析了有压力梯度的边界层两相流动稳定性,推导出类似于Saffman理论的修正的稳定性方程,数值计算采用高精度的谱方法。结果说明,压力梯度对边界层两相流动稳定性有显著的影响,顺压梯度增强流动稳定性,而逆压梯度则促进流动失稳。在不同的压力梯度和浓度下,Stokes数对流动稳定性的影响是一致的,存在一个临界Stokes数,小Stokes数促进流动失稳,而大Stokes数则提高临界雷诺数,抑制流动失稳的最佳Stokes数为10的量级。  相似文献   

12.
The unsteady flow of viscoelastic fluid with the fractional derivative Maxwell model (FDMM) in a channel is studied in this note. The exact solutions are obtained for an arbitrary pressure gradient by means of the finite Fourier cosine transform and the Laplace transform. Two special cases of pressure gradient are discussed. Some results given by the classical models with integer-order are included in this note.  相似文献   

13.
Reynolds Stress Budgets in Couette and Boundary Layer Flows   总被引:1,自引:0,他引:1  
Reynolds stress budgets for both Couette and boundary layer flows are evaluated and presented. Data are taken from direct numerical simulations of rotating and non-rotating plane turbulent Couette flow and turbulent boundary layer with and without adverse pressure gradient. Comparison of the total shear stress for the two types of flows suggests that the Couette case may be regarded as the high Reynolds number limit for the boundary layer flow close to the wall. The limit values of turbulence statistics close to the wall for the boundary layer for increasing Reynolds number approach the corresponding Couette flow values. The direction of rotation is chosen so that it has a stabilizing effect, whereas the adverse pressure gradient is destabilizing. The pressure-strain rate tensor in the Couette flow case is presented for a split into slow, rapid and Stokes terms. Most of the influence from rotation is located to the region close to the wall, and both the slow and rapid parts are affected. The anisotropy for the boundary layer decreases for higher Reynolds number, reflecting the larger separation of scales, and becomes close to that for Couette flow. The adverse pressure gradient has a strong weakening effect on the anisotropy. All of the data presented here are available on the web [36]. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.

This study investigates the electromagnetohydrodynamic (EMHD) flow of fractional viscoelastic fluids through a microchannel under the Navier slip boundary condition. The flow is driven by the pressure gradient and electromagnetic force where the electric field is applied horizontally, and the magnetic field is vertically (upward or downward). When the electric field direction is consistent with the pressure gradient direction, the changes of the steady flow rate and velocity with the Hartmann number Ha are irrelevant to the direction of the magnetic field (upward or downward). The steady flow rate decreases monotonically to zero with the increase in Ha. In contrast, when the direction of the electric field differs from the pressure gradient direction, the flow behavior depends on the direction of the magnetic field, i.e., symmetry breaking occurs. Specifically, when the magnetic field is vertically upward, the steady flow rate increases first and then decreases with Ha. When the magnetic field is reversed, the steady flow rate first reduces to zero as Ha increases from zero. As Ha continues to increase, the steady flow rate (velocity) increases in the opposite direction and then decreases, and finally drops to zero for larger Ha. The increase in the fractional calculus parameter α or Deborah number De makes it take longer for the flow rate (velocity) to reach the steady state. In addition, the increase in the strength of the magnetic field or electric field, or in the pressure gradient tends to accelerate the slip velocity at the walls. On the other hand, the increase in the thickness of the electric double-layer tends to reduce it.

  相似文献   

15.
ANALYSIS OF OSCILLATORY FLOW IN CONSIDERATION OF A PLASMA LAYER IN ARTERIAL STENOSESWang.Changbin(王长斌);LiuZhaorong(柳兆荣)(Recei...  相似文献   

16.
The present paper describes the dynamic process of a vapour bubble moving in a non-uniform flow field. The coupling between the bubble moving as a whole and the deformation of the bubble surface is considered. The effect of the pressure gradient on the bubble movement is analysed. For a given flow field the numerical calculation is carried out until the vapour bubble is split by a micro-jet.  相似文献   

17.
The problem of the average flow of a viscous incompressible fluid saturating a stationary porous incompressible matrix under a periodic action is considered. It is shown that a spatial inhomogeneity of the medium porosity leads to an average fluid flow, quadratically dependent on the action amplitude, in the direction of increase in porosity. In particular, this means that wave action on an oil reservoir could lead to fluid flow on the interfaces from low-porosity,weakly permeable collector regions into high-porosity regions, for example, to flow from blocks to fractures in fractured porous reservoirs, which makes it possible to enhance oil production. It is shown that in the presence of a constant pressure gradient the flow component generated by a periodic action can provide a substantial proportion of the total flow, especially on the boundaries with low-porosity strata or blocks. With increase in amplitude this may significantly exceed the component associated with the constant pressure gradient.  相似文献   

18.
Some properties of the time-dependent Navier-Stokes equations are discussed for flows impulsively started from rest by sudden application of a constant pressure gradient or by the impulsive motion of a boundary. Five illustrative examples are given. They are: unsteady flow in a circular cylinder moving parallel to its length, starting flow in a circular pipe, unsteady flow in a rotating cylinder, starting flow in a rectangular channel moving parallel to its length and unsteady flow in a channel of rectangular cross-section. It is found that the expressions of the quantities such as velocity, flux and skin friction are in series forms which may be rapidly convergent for large values of the time but slowly convergent for small values of the time or vice versa. It is shown that if their expressions can be found for one of large values of the time or small values of the time, these expressions can be used for the other.  相似文献   

19.
In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exact solution of the temperature equation in the absence of dissipation term has been computed and the analytical ex- pression for stream function and axial pressure gradient are established. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The expression for pressure rise has been computed numerically. The physical features of pertinent parameters are analyzed by plotting graphs and discussed in detail.  相似文献   

20.
Experimental data and correlations available in the literature for the liquid holdup εL and the pressure gradient ΔPTP/L for gas-liquid pipe flow, generally, do not cover the domain 0 < εL < 0.06. Reliable pressure-drop correlations for this holdup range are important for calculating flow rates of natural gas, containing traces of condensate. In the present paper attention is focused on reliable measurements of εL and ΔPTPIL values and on the development of a phenomenological model for the liquid-holdup range 0 < εL < 0.06. This model is called the “apparent rough surface” model and is referred to as the ARS model. The experimental results presented in this paper refer to air-water and air-water + ethyleneglycol systems with varying transport properties in horizontal straight smooth glass tubes under steady-state conditions. The holdup and pressure gradient values predicted with the ARS model agree satisfactorily with both our experimental results and data obtained from the literature referring to small liquid-holdup values 0 < εL < 0.06. Further, it has been shown that in the domain 38 < < 72 mPa m the interfacial tension of the gas-liquid system has no significant effect on the liquid holdup. The pressure gradient, however, increases slightly with decreasing surface tension values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号