首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The purpose of this study was to examine the contribution of information provided by vowels versus consonants to sentence intelligibility in young normal-hearing (YNH) and typical elderly hearing-impaired (EHI) listeners. Sentences were presented in three conditions, unaltered or with either the vowels or the consonants replaced with speech shaped noise. Sentences from male and female talkers in the TIMIT database were selected. Baseline performance was established at a 70 dB SPL level using YNH listeners. Subsequently EHI and YNH participants listened at 95 dB SPL. Participants listened to each sentence twice and were asked to repeat the entire sentence after each presentation. Words were scored correct if identified exactly. Average performance for unaltered sentences was greater than 94%. Overall, EHI listeners performed more poorly than YNH listeners. However, vowel-only sentences were always significantly more intelligible than consonant-only sentences, usually by a ratio of 2:1 across groups. In contrast to written English or words spoken in isolation, these results demonstrated that for spoken sentences, vowels carry more information about sentence intelligibility than consonants for both young normal-hearing and elderly hearing-impaired listeners.  相似文献   

2.
The purpose of this study was to examine the effect of reduced vowel working space on dysarthric talkers' speech intelligibility using both acoustic and perceptual approaches. In experiment 1, the acoustic-perceptual relationship between vowel working space area and speech intelligibility was examined in Mandarin-speaking young adults with cerebral palsy. Subjects read aloud 18 bisyllabic words containing the vowels /i/, /a/, and /u/ using their normal speaking rate. Each talker's words were identified by three normal listeners. The percentage of correct vowel and word identification were calculated as vowel intelligibility and word intelligibility, respectively. Results revealed that talkers with cerebral palsy exhibited smaller vowel working space areas compared to ten age-matched controls. The vowel working space area was significantly correlated with vowel intelligibility (r=0.632, p<0.005) and with word intelligibility (r=0.684, p<0.005). Experiment 2 examined whether tokens of expanded vowel working spaces were perceived as better vowel exemplars and represented with greater perceptual spaces than tokens of reduced vowel working spaces. The results of the perceptual experiment support this prediction. The distorted vowels of talkers with cerebral palsy compose a smaller acoustic space that results in shrunken intervowel perceptual distances for listeners.  相似文献   

3.
The speech signal contains many acoustic properties that may contribute differently to spoken word recognition. Previous studies have demonstrated that the importance of properties present during consonants or vowels is dependent upon the linguistic context (i.e., words versus sentences). The current study investigated three potentially informative acoustic properties that are present during consonants and vowels for monosyllabic words and sentences. Natural variations in fundamental frequency were either flattened or removed. The speech envelope and temporal fine structure were also investigated by limiting the availability of these cues via noisy signal extraction. Thus, this study investigated the contribution of these acoustic properties, present during either consonants or vowels, to overall word and sentence intelligibility. Results demonstrated that all processing conditions displayed better performance for vowel-only sentences. Greater performance with vowel-only sentences remained, despite removing dynamic cues of the fundamental frequency. Word and sentence comparisons suggest that the speech envelope may be at least partially responsible for additional vowel contributions in sentences. Results suggest that speech information transmitted by the envelope is responsible, in part, for greater vowel contributions in sentences, but is not predictive for isolated words.  相似文献   

4.
The intelligibility of speech is sustained at lower signal-to-noise ratios when the speech has a different interaural configuration from the noise. This paper argues that the advantage arises in part because listeners combine evidence of the spectrum of speech in the across-frequency profile of interaural decorrelation with evidence in the across-frequency profile of intensity. To support the argument, three experiments examined the ability of listeners to integrate and segregate evidence of vowel formants in these two profiles. In experiment 1, listeners achieved accurate identification of the members of a small set of vowels whose first formant was defined by a peak in one profile and whose second formant was defined by a peak in the other profile. This result demonstrates that integration is possible. Experiment 2 demonstrated that integration is not mandatory, insofar as listeners could report the identity of a vowel defined entirely in one profile despite the presence of a competing vowel in the other profile. The presence of the competing vowel reduced accuracy of identification, however, showing that segregation was incomplete. Experiment 3 demonstrated that segregation of the binaural vowel, in particular, can be increased by the introduction of an onset asynchrony between the competing vowels. The results of experiments 2 and 3 show that the intrinsic cues for segregation of the profiles are relatively weak. Overall, the results are compatible with the argument that listeners can integrate evidence of spectral peaks from the two profiles.  相似文献   

5.
Three experiments were conducted to study relative contributions of speaking rate, temporal envelope, and temporal fine structure to clear speech perception. Experiment I used uniform time scaling to match the speaking rate between clear and conversational speech. Experiment II decreased the speaking rate in conversational speech without processing artifacts by increasing silent gaps between phonetic segments. Experiment III created "auditory chimeras" by mixing the temporal envelope of clear speech with the fine structure of conversational speech, and vice versa. Speech intelligibility in normal-hearing listeners was measured over a wide range of signal-to-noise ratios to derive speech reception thresholds (SRT). The results showed that processing artifacts in uniform time scaling, particularly time compression, reduced speech intelligibility. Inserting gaps in conversational speech improved the SRT by 1.3 dB, but this improvement might be a result of increased short-term signal-to-noise ratios during level normalization. Data from auditory chimeras indicated that the temporal envelope cue contributed more to the clear speech advantage at high signal-to-noise ratios, whereas the temporal fine structure cue contributed more at low signal-to-noise ratios. Taken together, these results suggest that acoustic cues for the clear speech advantage are multiple and distributed.  相似文献   

6.
Speakers may adapt the phonetic details of their productions when they anticipate perceptual difficulty or comprehension failure on the part of a listener. Previous research suggests that a speaking style known as clear speech is more intelligible overall than casual, conversational speech for a variety of listener populations. However, it is unknown whether clear speech improves the intelligibility of fricative consonants specifically, or how its effects on fricative perception might differ depending on listener population. The primary goal of this study was to determine whether clear speech enhances fricative intelligibility for normal-hearing listeners and listeners with simulated impairment. Two experiments measured babble signal-to-noise ratio thresholds for fricative minimal pair distinctions for 14 normal-hearing listeners and 14 listeners with simulated sloping, recruiting impairment. Results indicated that clear speech helped both groups overall. However, for impaired listeners, reliable clear speech intelligibility advantages were not found for non-sibilant pairs. Correlation analyses comparing acoustic and perceptual data indicated that a shift of energy concentration toward higher frequency regions and greater source strength contributed to the clear speech effect for normal-hearing listeners. Correlations between acoustic and perceptual data were less consistent for listeners with simulated impairment, and suggested that lower-frequency information may play a role.  相似文献   

7.
Sentences spoken "clearly" are significantly more intelligible than those spoken "conversationally" for hearing-impaired listeners in a variety of backgrounds [Picheny et al., J. Speech Hear. Res. 28, 96-103 (1985); Uchanski et al., ibid. 39, 494-509 (1996); Payton et al., J. Acoust. Soc. Am. 95, 1581-1592 (1994)]. While producing clear speech, however, talkers often reduce their speaking rate significantly [Picheny et al., J. Speech Hear. Res. 29, 434-446 (1986); Uchanski et al., ibid. 39, 494-509 (1996)]. Yet speaking slowly is not solely responsible for the intelligibility benefit of clear speech (over conversational speech), since a recent study [Krause and Braida, J. Acoust. Soc. Am. 112, 2165-2172 (2002)] showed that talkers can produce clear speech at normal rates with training. This finding suggests that clear speech has inherent acoustic properties, independent of rate, that contribute to improved intelligibility. Identifying these acoustic properties could lead to improved signal processing schemes for hearing aids. To gain insight into these acoustical properties, conversational and clear speech produced at normal speaking rates were analyzed at three levels of detail (global, phonological, and phonetic). Although results suggest that talkers may have employed different strategies to achieve clear speech at normal rates, two global-level properties were identified that appear likely to be linked to the improvements in intelligibility provided by clear/normal speech: increased energy in the 1000-3000-Hz range of long-term spectra and increased modulation depth of low frequency modulations of the intensity envelope. Other phonological and phonetic differences associated with clear/normal speech include changes in (1) frequency of stop burst releases, (2) VOT of word-initial voiceless stop consonants, and (3) short-term vowel spectra.  相似文献   

8.
This study investigated the relative contributions of consonants and vowels to the perceptual intelligibility of monosyllabic consonant-vowel-consonant (CVC) words. A noise replacement paradigm presented CVCs with only consonants or only vowels preserved. Results demonstrated no difference between overall word accuracy in these conditions; however, different error patterns were observed. A significant effect of lexical difficulty was demonstrated for both types of replacement, whereas the noise level used during replacement did not influence results. The contribution of consonant and vowel transitional information present at the consonant-vowel boundary was also explored. The proportion of speech presented, regardless of the segmental condition, overwhelmingly predicted performance. Comparisons were made with previous segment replacement results using sentences [Fogerty, and Kewley-Port (2009). J. Acoust. Soc. Am. 126, 847-857]. Results demonstrated that consonants contribute to intelligibility equally in both isolated CVC words and sentences. However, vowel contributions were mediated by context, with greater contributions to intelligibility in sentence contexts. Therefore, it appears that vowels in sentences carry unique speech cues that greatly facilitate intelligibility which are not informative and/or present during isolated word contexts. Consonants appear to provide speech cues that are equally available and informative during sentence and isolated word presentations.  相似文献   

9.
Many studies have noted great variability in speech perception ability among postlingually deafened adults with cochlear implants. This study examined phoneme misperceptions for 30 cochlear implant listeners using either the Nucleus-22 or Clarion version 1.2 device to examine whether listeners with better overall speech perception differed qualitatively from poorer listeners in their perception of vowel and consonant features. In the first analysis, simple regressions were used to predict the mean percent-correct scores for consonants and vowels for the better group of listeners from those of the poorer group. A strong relationship between the two groups was found for consonant identification, and a weak, nonsignificant relationship was found for vowel identification. In the second analysis, it was found that less information was transmitted for consonant and vowel features to the poorer listeners than to the better listeners; however, the pattern of information transmission was similar across groups. Taken together, results suggest that the performance difference between the two groups is primarily quantitative. The results underscore the importance of examining individuals' perception of individual phoneme features when attempting to relate speech perception to other predictor variables.  相似文献   

10.
This study explored how across-talker differences influence non-native vowel perception. American English (AE) and Korean listeners were presented with recordings of 10 AE vowels in /bVd/ context. The stimuli were mixed with noise and presented for identification in a 10-alternative forced-choice task. The two listener groups heard recordings of the vowels produced by 10 talkers at three signal-to-noise ratios. Overall the AE listeners identified the vowels 22% more accurately than the Korean listeners. There was a wide range of identification accuracy scores across talkers for both AE and Korean listeners. At each signal-to-noise ratio, the across-talker intelligibility scores were highly correlated for AE and Korean listeners. Acoustic analysis was conducted for 2 vowel pairs that exhibited variable accuracy across talkers for Korean listeners but high identification accuracy for AE listeners. Results demonstrated that Korean listeners' error patterns for these four vowels were strongly influenced by variability in vowel production that was within the normal range for AE talkers. These results suggest that non-native listeners are strongly influenced by across-talker variability perhaps because of the difficulty they have forming native-like vowel categories.  相似文献   

11.
This study examined the effects of mild-to-moderate sensorineural hearing loss on vowel perception abilities of young, hearing-impaired (YHI) adults. Stimuli were presented at a low conversational level with a flat frequency response (approximately 60 dB SPL), and in two gain conditions: (a) high level gain with a flat frequency response (95 dB SPL), and (b) frequency-specific gain shaped according to each listener's hearing loss (designed to simulate the frequency response provided by a linear hearing aid to an input signal of 60 dB SPL). Listeners discriminated changes in the vowels /I e E inverted-v ae/ when F1 or F2 varied, and later categorized the vowels. YHI listeners performed better in the two gain conditions than in the conversational level condition. Performances in the two gain conditions were similar, suggesting that upward spread of masking was not seen at these signal levels for these tasks. Results were compared with those from a group of elderly, hearing-impaired (EHI) listeners, reported in Coughlin, Kewley-Port, and Humes [J. Acoust. Soc. Am. 104, 3597-3607 (1998)]. Comparisons revealed no significant differences between the EHI and YHI groups, suggesting that hearing impairment, not age, is the primary contributor to decreased vowel perception in these listeners.  相似文献   

12.
Cross-generational and cross-dialectal variation in vowels among speakers of American English was examined in terms of vowel identification by listeners and vowel classification using pattern recognition. Listeners from Western North Carolina and Southeastern Wisconsin identified 12 vowel categories produced by 120 speakers stratified by age (old adults, young adults, and children), gender, and dialect. The vowels /?, o, ?, u/ were well identified by both groups of listeners. The majority of confusions were for the front /i, ?, e, ?, ?/, the low back /ɑ, ?/ and the monophthongal North Carolina /a?/. For selected vowels, generational differences in acoustic vowel characteristics were perceptually salient, suggesting listeners' responsiveness to sound change. Female exemplars and native-dialect variants produced higher identification rates. Linear discriminant analyses which examined dialect and generational classification accuracy showed that sampling the formant pattern at vowel midpoint only is insufficient to separate the vowels. Two sample points near onset and offset provided enough information for successful classification. The models trained on one dialect classified the vowels from the other dialect with much lower accuracy. The results strongly support the importance of dynamic information in accurate classification of cross-generational and cross-dialectal variations.  相似文献   

13.
Cochlear implants provide users with limited spectral and temporal information. In this study, the amount of spectral and temporal information was systematically varied through simulations of cochlear implant processors using a noise-excited vocoder. Spectral information was controlled by varying the number of channels between 1 and 16, and temporal information was controlled by varying the lowpass cutoff frequencies of the envelope extractors from 1 to 512 Hz. Consonants and vowels processed using those conditions were presented to seven normal-hearing native-English-speaking listeners for identification. The results demonstrated that both spectral and temporal cues were important for consonant and vowel recognition with the spectral cues having a greater effect than the temporal cues for the ranges of numbers of channels and lowpass cutoff frequencies tested. The lowpass cutoff for asymptotic performance in consonant and vowel recognition was 16 and 4 Hz, respectively. The number of channels at which performance plateaued for consonants and vowels was 8 and 12, respectively. Within the above-mentioned ranges of lowpass cutoff frequency and number of channels, the temporal and spectral cues showed a tradeoff for phoneme recognition. Information transfer analyses showed different relative contributions of spectral and temporal cues in the perception of various phonetic/acoustic features.  相似文献   

14.
Recent studies have demonstrated that mothers exaggerate phonetic properties of infant-directed (ID) speech. However, these studies focused on a single acoustic dimension (frequency), whereas speech sounds are composed of multiple acoustic cues. Moreover, little is known about how mothers adjust phonetic properties of speech to children with hearing loss. This study examined mothers' production of frequency and duration cues to the American English tense/lax vowel contrast in speech to profoundly deaf (N?=?14) and normal-hearing (N?=?14) infants, and to an adult experimenter. First and second formant frequencies and vowel duration of tense (/i/,?/u/) and lax (/I/,?/?/) vowels were measured. Results demonstrated that for both infant groups mothers hyperarticulated the acoustic vowel space and increased vowel duration in ID speech relative to adult-directed speech. Mean F2 values were decreased for the /u/ vowel and increased for the /I/ vowel, and vowel duration was longer for the /i/, /u/, and /I/ vowels in ID speech. However, neither acoustic cue differed in speech to hearing-impaired or normal-hearing infants. These results suggest that both formant frequencies and vowel duration that differentiate American English tense/lx vowel contrasts are modified in ID speech regardless of the hearing status of the addressee.  相似文献   

15.
Synthesis (carrier) signals in acoustic models embody assumptions about perception of auditory electric stimulation. This study compared speech intelligibility of consonants and vowels processed through a set of nine acoustic models that used Spectral Peak (SPEAK) and Advanced Combination Encoder (ACE)-like speech processing, using synthesis signals which were representative of signals used previously in acoustic models as well as two new ones. Performance of the synthesis signals was determined in terms of correspondence with cochlear implant (CI) listener results for 12 attributes of phoneme perception (consonant and vowel recognition; F1, F2, and duration information transmission for vowels; voicing, manner, place of articulation, affrication, burst, nasality, and amplitude envelope information transmission for consonants) using four measures of performance. Modulated synthesis signals produced the best correspondence with CI consonant intelligibility, while sinusoids, narrow noise bands, and varying noise bands produced the best correspondence with CI vowel intelligibility. The signals that performed best overall (in terms of correspondence with both vowel and consonant attributes) were modulated and unmodulated noise bands of varying bandwidth that corresponded to a linearly varying excitation width of 0.4 mm at the apical to 8 mm at the basal channels.  相似文献   

16.
The purpose of this study is to determine the relative impact of reverberant self-masking and overlap-masking effects on speech intelligibility by cochlear implant listeners. Sentences were presented in two conditions wherein reverberant consonant segments were replaced with clean consonants, and in another condition wherein reverberant vowel segments were replaced with clean vowels. The underlying assumption is that self-masking effects would dominate in the first condition, whereas overlap-masking effects would dominate in the second condition. Results indicated that the degradation of speech intelligibility in reverberant conditions is caused primarily by self-masking effects that give rise to flattened formant transitions.  相似文献   

17.
In face-to-face speech communication, the listener extracts and integrates information from the acoustic and optic speech signals. Integration occurs within the auditory modality (i.e., across the acoustic frequency spectrum) and across sensory modalities (i.e., across the acoustic and optic signals). The difficulties experienced by some hearing-impaired listeners in understanding speech could be attributed to losses in the extraction of speech information, the integration of speech cues, or both. The present study evaluated the ability of normal-hearing and hearing-impaired listeners to integrate speech information within and across sensory modalities in order to determine the degree to which integration efficiency may be a factor in the performance of hearing-impaired listeners. Auditory-visual nonsense syllables consisting of eighteen medial consonants surrounded by the vowel [a] were processed into four nonoverlapping acoustic filter bands between 300 and 6000 Hz. A variety of one, two, three, and four filter-band combinations were presented for identification in auditory-only and auditory-visual conditions: A visual-only condition was also included. Integration efficiency was evaluated using a model of optimal integration. Results showed that normal-hearing and hearing-impaired listeners integrated information across the auditory and visual sensory modalities with a high degree of efficiency, independent of differences in auditory capabilities. However, across-frequency integration for auditory-only input was less efficient for hearing-impaired listeners. These individuals exhibited particular difficulty extracting information from the highest frequency band (4762-6000 Hz) when speech information was presented concurrently in the next lower-frequency band (1890-2381 Hz). Results suggest that integration of speech information within the auditory modality, but not across auditory and visual modalities, affects speech understanding in hearing-impaired listeners.  相似文献   

18.
It has been posited that the role of prosody in lexical segmentation is elevated when the speech signal is degraded or unreliable. Using predictions from Cutler and Norris' [J. Exp. Psychol. Hum. Percept. Perform. 14, 113-121 (1988)] metrical segmentation strategy hypothesis as a framework, this investigation examined how individual suprasegmental and segmental cues to syllabic stress contribute differentially to the recognition of strong and weak syllables for the purpose of lexical segmentation. Syllabic contrastivity was reduced in resynthesized phrases by systematically (i) flattening the fundamental frequency (F0) contours, (ii) equalizing vowel durations, (iii) weakening strong vowels, (iv) combining the two suprasegmental cues, i.e., F0 and duration, and (v) combining the manipulation of all cues. Results indicated that, despite similar decrements in overall intelligibility, F0 flattening and the weakening of strong vowels had a greater impact on lexical segmentation than did equalizing vowel duration. Both combined-cue conditions resulted in greater decrements in intelligibility, but with no additional negative impact on lexical segmentation. The results support the notion of F0 variation and vowel quality as primary conduits for stress-based segmentation and suggest that the effectiveness of stress-based segmentation with degraded speech must be investigated relative to the suprasegmental and segmental impoverishments occasioned by each particular degradation.  相似文献   

19.
Current theories of cross-language speech perception claim that patterns of perceptual assimilation of non-native segments to native categories predict relative difficulties in learning to perceive (and produce) non-native phones. Cross-language spectral similarity of North German (NG) and American English (AE) vowels produced in isolated hVC(a) (di)syllables (study 1) and in hVC syllables embedded in a short sentence (study 2) was determined by discriminant analyses, to examine the extent to which acoustic similarity was predictive of perceptual similarity patterns. The perceptual assimilation of NG vowels to native AE vowel categories by AE listeners with no German language experience was then assessed directly. Both studies showed that acoustic similarity of AE and NG vowels did not always predict perceptual similarity, especially for "new" NG front rounded vowels and for "similar" NG front and back mid and mid-low vowels. Both acoustic and perceptual similarity of NG and AE vowels varied as a function of the prosodic context, although vowel duration differences did not affect perceptual assimilation patterns. When duration and spectral similarity were in conflict, AE listeners assimilated vowels on the basis of spectral similarity in both prosodic contexts.  相似文献   

20.
The present study measured the recognition of spectrally degraded and frequency-shifted vowels in both acoustic and electric hearing. Vowel stimuli were passed through 4, 8, or 16 bandpass filters and the temporal envelopes from each filter band were extracted by half-wave rectification and low-pass filtering. The temporal envelopes were used to modulate noise bands which were shifted in frequency relative to the corresponding analysis filters. This manipulation not only degraded the spectral information by discarding within-band spectral detail, but also shifted the tonotopic representation of spectral envelope information. Results from five normal-hearing subjects showed that vowel recognition was sensitive to both spectral resolution and frequency shifting. The effect of a frequency shift did not interact with spectral resolution, suggesting that spectral resolution and spectral shifting are orthogonal in terms of intelligibility. High vowel recognition scores were observed for as few as four bands. Regardless of the number of bands, no significant performance drop was observed for tonotopic shifts equivalent to 3 mm along the basilar membrane, that is, for frequency shifts of 40%-60%. Similar results were obtained from five cochlear implant listeners, when electrode locations were fixed and the spectral location of the analysis filters was shifted. Changes in recognition performance in electrical and acoustic hearing were similar in terms of the relative location of electrodes rather than the absolute location of electrodes, indicating that cochlear implant users may at least partly accommodate to the new patterns of speech sounds after long-time exposure to their normal speech processor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号