首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proton-conducting polymer electrolytes based on poly vinyl alcohol (PVA; 88% hydrolyzed) and ammonium iodide (NH4I) has been prepared by solution casting method with different molar ratios of polymer and salt using DMSO as solvent. DMSO has been chosen as a solvent due its high dielectric constant and also its plasticizing nature. The ionic conductivity has been found to increase with increasing salt concentration up to 25 mol% beyond which the conductivity decreases and the highest ambient temperature conductivity has been found to be 2.5×10−3 S cm−1. The conductivity enhancement with addition of NH4I has been well correlated with the increase in amorphous nature of the films confirmed from XRD and differential scanning calorimetry (DSC) analyses. The temperature-dependent conductivity follows the Arrhenius relation. The polymer-proton interactions have been analyzed by FTIR spectroscopy.  相似文献   

2.
Solid polymer electrolytes have attracted considerable attention due to their wide variety of electrochemical device applications. The present paper is focused on the effect of plasticizer to study the structural, electrical and dielectric properties of PVA-H3PO4 complex polymer electrolytes. XRD results show that the crystallinity decreases due to addition of plasticizer up to particular amount of polyethylene glycol (PEG) and thereafter it increases. Consequently, there is an enhancement in the amorphicity of the samples responsible for process of ion transport. This characteristic behavior can be verified by the analysis of the differential scanning calorimetry results. FTIR spectroscopy has been used to characterize the structure of polymer and confirms the complexation of plasticizer with host polymeric matrix. Electrical and dielectric properties have been studied for different wt% of plasticizer and their variations have been observed. The addition of PEG has significantly improved the ionic conductivity. The optimum ionic conductivity value of the plasticized polymer electrolyte film of 30 wt% PEG has been achieved to be of the order of 10−4 S cm−1 at room temperature and corresponding ionic transference number is 0.98. The minimum activation energy is found to be 0.25 eV for optimum conductivity condition.  相似文献   

3.
An attempt has been made to prepare a new proton-conducting polymer electrolyte based on poly(vinyl alcohol) doped with ammonium fluoride (NH4F) by solution casting technique. The complex formation between polymer and dissociated salt has been confirmed by X-ray diffraction and Fourier transform infrared spectroscopy studies. The highest ionic conductivity has been found to be 6.9?×?10?6?Scm?1 at ambient temperature (303 K) for 85PVA:15NH4F polymer electrolyte. The conductance spectra contain a low frequency plateau region and high frequency dispersion region. The dielectric spectra exhibit the low frequency dispersion, which is due to space charge accumulation at the electrode–electrolyte interface. The modulus spectra indicate non-Debye nature of the material. The highest ionic conductivity polymer electrolyte 85PVA:15NH4F has low activation energy 0.2 eV among the prepared polymer electrolytes.  相似文献   

4.
An attempt has been made to prepare a new proton conducting polymer electrolyte based on polyvinyl alcohol (PVA) doped with NH4NO3 by solution casting technique. The complex formation between polymer and dissociated salt has been confirmed by X-ray diffraction analysis. The ionic conductivity of the prepared polymer electrolyte has been found by ac impedance spectroscopic analysis. The highest ionic conductivity has been found to be 7.5 × 10−3 Scm−1 at ambient temperature for 20 mol% NH4NO3-doped PVA with low activation energy (~0.19 eV). The temperature-dependent conductivity of the polymer electrolyte follows an Arrhenius relationship, which shows hopping of ions in the polymer matrix.  相似文献   

5.
The polyethylene oxide (PEO) based lithium ion conducting polymer electrolytes complexed with lithium trifluoromethanesulfonate (LiCF3SO3 or LiTf) plasticized with an ionic liquid 1-ethyl 3-methyl imidazolium trifluoromethanesulfonate (EMITf) have been reported. Morphological, spectroscopic, thermal and electrochemical investigations demonstrate promising characteristics of the polymer films, suitable as electrolyte in various energy storage/conversion devices. Significant structural changes have been observed in the polymer electrolyte due to the ionic liquid addition, investigated by X-ray diffraction (XRD) and optical microscopy. The ion-polymer interaction, particularly the interaction of imidazolium cation with PEO chains, has been evidenced by IR and Raman spectroscopic studies. The optimized composition of the polymer electrolyte i.e. PEO25.LiTf + 40 wt.% EMITf offer room temperature ionic conductivity of ~ 3 × 10− 4 S cm− 1 with wide electrochemical stability window and excellent thermal stability. The ‘σ versus 1/T’ curves show apparent Arrhenius behavior below and above melting temperature. The ionic conductivity has been observed due to Li+ ions, as confirmed from 7Li-NMR studies, though the component ions of ionic liquid and anions also contribute significantly to the overall conductivity.  相似文献   

6.
An attempt has been made in the present work to combine gel and composite polymer electrolyte routes together to form a composite polymeric gel electrolyte that is expected to possess high ionic conductivity with good mechanical integrity. Polyethylene glycol (PEG) based composite gel electrolytes using polyvinyl alcohol (PVA) as guest polymer have been synthesized with 1 molar solution of ammonium thiocyanate (NH4SCN) in dimethyl sulphoxide (DMSO) and electrically characterized. The ionic conductivity measurements indicate that PEG:PVA:NH4SCN-based composite gel electrolytes are superior (σ max = 5.7 × 10−2 S cm−1) to pristine electrolytes (PEG:NH4SCN system) and conductivity variation with filler concentration remains within an order of magnitude. The observed conductivity maxima have been correlated to PEG:PVA:NH4SCN-and PVA:NH4SCN-type complexes. Temperature dependence of conductivity profiles exhibits Arrhenius behaviour in low temperature regime followed by VTF character at higher temperature.   相似文献   

7.
Solid polymer electrolytes based on poly(vinyl alcohol) (PVA) doped with NH4Br have been prepared by the solution-casting method. The complex formation between the polymer and the salt has been confirmed by Fourier transform infrared spectroscopy. The highest conductivity at 303 K has been found to be of the order of 10−4 Scm−1 for 25 mol% NH4Br-doped PVA system. The ionic transference number of polymer electrolyte has been estimated by Wagner’s polarization method, and the results reveal that the conducting species are predominantly ions. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006.  相似文献   

8.
Solid polymer electrolytes based on polyacrylonitrile (PAN) doped with ammonium thiocyanate (NH4SCN) in different molar ratios of polymer and salt have been prepared by solution-casting method using DMF as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. A shift in glass transition temperature (T g) of the PAN?:?NH4SCN electrolytes has been observed from the DSC thermograms which indicates the interaction between the polymer and the salt. From the AC impedance spectroscopic analysis, the ionic conductivity has been found to increase with increasing salt concentration up to 30 mol% of NH4SCN beyond which the conductivity decreases and the highest ambient temperature conductivity has been found to be 5.79?×?10?3 S cm?1. The temperature-dependent conductivity of the polymer electrolyte follows an Arrhenius relationship which shows hopping of ions in the polymer matrix. The dielectric loss curves for the sample 70 mol% PAN?:?30 mol% NH4SCN reveal the low-frequency β-relaxation peak pronounced at high temperature, and it may be caused by side group dipoles. The ionic transference number of polymer electrolyte has been estimated by Wagner’s polarization method, and the results reveal that the conductivity species are predominantly ions.  相似文献   

9.
Gel polymer electrolytes (GPE) obtained by immobilizing a solution of zinc triflate (ZnTr) in an ionic liquid, namely 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [emim][Tf2N] within a biodegradable polymeric matrix of poly-ε-caprolactone (PCL) were prepared by a simple solvent cast technique for different concentrations of the ionic liquid. The electrolyte with the composition 75 wt% PCL: 25 wt% ZnTr+100 wt% [emim][Tf2N] showed the highest ionic conductivity of 1.1×10−4 S cm−1 at 25 °C and favored by the rich amorphous phase of the GPE as confirmed from room temperature X-ray diffraction analysis (XRD). The morphology of the GPE was examined using scanning electron microscopy (SEM) which revealed the homogeneity of the prepared GPE system. The temperature dependence of electrical conductivity of the GPE followed the Arrhenius behavior. The Zn2+ ionic transport number has been determined to be ~0.62 which denotes the predominant contribution of zinc ion towards total ionic conductivity. The electrochemical stability window of GPE is found to be 2.5 V with a thermal stability upto 200 °C. This eco-friendly and safe electrolyte may be used to fabricate compostable batteries, in future, with a suitable selection of other components of the battery system.  相似文献   

10.
A novel composite alkaline polymer electrolyte based on poly(vinyl alcohol) (PVA) polymer matrix, titanium dioxide (TiO2) ceramic fillers, KOH, and H2O was prepared by a solution casting method. The properties of PVA-TiO2-KOH alkaline polymer electrolyte films were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and AC impedance techniques. DSC and XRD results showed that the domain of amorphous region in the PVA polymer matrix augmented when TiO2 filler was added. The SEM result showed that TiO2 particles dispersed into the PVA matrix although some TiO2 aggregates of several micrometers were formed. The alkaline polymer electrolyte showed excellent electrochemical properties. The room temperature (20 °C) ionic conductivity values of typical samples were between 0.102 and 0.171 S cm−1. The Zn-Ni secondary battery with the alkaline polymer electrolyte PVA-TiO2-KOH had excellent electrochemical property at the low charge-discharge rate.  相似文献   

11.
The role of inorganic ceramic fillers namely nanosized Al2O3 (15-25 nm) and TiO2 (10-14 nm) and ferroelectric filler SrBi4Ti4O15 (SBT CIT) (0.5 μm) synthesized by citrate gel technique (CIT) on the ionic conductivity and electrochemical properties of polymer blend 15 wt% PMMA+PEO8:LiClO4+2 wt% EC/PC electrolytes were investigated. Enhancement in conductivity was obtained with a maximum of 0.72×10−5 S cm−1 at 21 °C for 2 wt% of SrBi4Ti4O15 (SBT CIT) composite polymer electrolyte. The lithium-ion transport number and the electrochemical stability of the composite polymer electrolytes at ambient temperature were analyzed. An enhancement in electrochemical stability was observed for polymer composites containing 2 wt% of SrBi4Ti4O15 (SBT CIT) as fillers.  相似文献   

12.
Poly (acrylonitrile) (PAN) and ammonium chloride (NH4Cl)-based proton conducting polymer electrolytes with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The FTIR analysis confirms the complex formation of the host polymer (PAN) with the salt (NH4Cl). DSC measurements show a decrease in Tg with the increase in salt concentration. The conductivity analysis shows that the 25 mol% ammonium chloride doped polymer electrolyte has a maximum ionic conductivity, and it has been found to be 6.4 × 10?3 Scm?1, at room temperature. The temperature dependence of conductivity of the polymer electrolyte complexes appears to obey the Arrhenius nature. The activation energy (Ea = 0.23 eV) has been found to be low for 25 mol% salt doped polymer electrolyte. The dielectric behavior has been analyzed using dielectric permittivity (ε*), and the relaxation frequency (τ) has been calculated from the loss tangent spectra (tan δ). Using this maximum ionic conducting polymer electrolyte, the primary proton conducting battery with configuration Zn + ZnSO4·7H2O/75 PAN:25 NH4Cl/PbO2 + V2O5 has been fabricated and their discharge characteristics have been studied.  相似文献   

13.
The lithium ion conducting solid polymer electrolytes (SPE) based on PVAc-LiClO4 of various compositions were prepared by solution casting technique. Structure and surface morphology characterization were studied by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) measurements, respectively. Thermal and conductivity behavior of polymer-salt complexes were studied by employing differential scanning calorimetry (DSC) and ac impedance measurements, respectively. XRD and SEM analyses indicate the amorphous nature of the polymer-salt complexes. DSC measurements show decrease in Tg with the increase in LiClO4 concentrations. The bulk conductivity of the PVAc:LiClO4 polymer electrolytes was found to vary between 7.6×10−7 and 6.2×10−5 S cm−1 at 303 K with the increase in salt concentration. The temperature dependence of the polymer electrolyte complexes appear to obey Arrhenius law.  相似文献   

14.
Polymer-salt complex with poly(vinyl chloride) (PVC) and poly(acrylonitrile) (PAN) as host polymers blended with lithium bis-(trifluoro methanesulfonyl)imide, LiTFSI [LiN(CF3SO2)2] as dopant salt were prepared in the form of thin film. Fourier transform infrared (FTIR) studies show the evidence of the complexation between PVC, PAN and LiTFSI. Ionic conductivity studies reveal that polymer electrolyte with 30 wt.% LiTFSI has the highest ionic conductivity of 4.39 × 10− 4 S/cm at room temperature. The polymer electrolytes are also found to be stable up to 315 °C before they decompose. Thermal stability of the polymer electrolytes was also found to increase with increase in salt content. This was proven through thermogravimetric studies.  相似文献   

15.
Proton-conducting polymer electrolytes based on biopolymer, agar-agar as the polymer host, ammonium bromide (NH4Br) as the salt and ethylene carbonate (EC) as the plasticizer have been prepared by solution casting technique with dimethylformamide as solvent. Addition of NH4Br and EC with the biopolymer resulted in an increase in the ionic conductivity of polymer electrolyte. EC was added to increase the degree of salt dissociation and also ionic mobility. The highest ionic conductivity achieved at room temperature was for 50 wt% agar/50 wt% NH4Br/0.3% EC with the conductivity 3.73?×?10?4 S cm?1. The conductivity of the polymer electrolyte increases with the increase in amount of plasticizer. The frequency-dependent conductivity, dielectric permittivity (ε′) and modulus (M′) studies were carried out.  相似文献   

16.
The proton conducting solid-state polymer electrolyte comprising blend of poly(vinyl alcohol) (PVA) and poly(N-vinylimidazole) (PVIM), ammonium tetrafluoroborate (NH4BF4) as salt, and polyethylene glycol (PEG) (molecular weight 300 and 600) as plasticizer is prepared at various compositions by solution cast technique. The prepared films are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy analysis. The conductivity–temperature plots are found to follow an Arrhenius nature. The conductivity of solid polymer electrolytes is found to depend on salt and plasticizer content and also on the dielectric constant value and molecular weight of the plasticizer. Maximum ionic conductivity values of 2.20?×?10?4 and 1.28?×?10?4?S?cm?1 at 30 °C are obtained for the system (PVA–PVIM)?+?20 wt.% NH4BF4?+?150 wt.% PEG300 and (PVA–PVIM)?+?20 wt.% NH4BF4?+?150 wt.% PEG300, respectively. The blended polymer, complexed with salt and plasticizer, is shown to be a predominantly ionic conductor. The proton transport in the system may be expected to follow Grotthuss-type mechanism.  相似文献   

17.
Thin films of blend polymer electrolytes comprising poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) complexed with ammonium thiocyanate (NH4SCN) salt in different compositions have been prepared by solution casting technique using distilled water as solvent. The prepared films have been investigated by different experimental techniques. The complexation of these films has been studied by FTIR spectroscopy. The increase in amorphousness of the films with increase in NH4SCN content has been confirmed by XRD analysis. The addition of ammonium thiocyanate salt to PVA-PVP polymer blend shows a shift in Tg of the blend. The effect of salt concentration and temperature on the ionic conductivity of the polymer blend films has been analyzed using AC impedance spectroscopy. The maximum conductivity of 6.85 × 10?4 S cm?1 at room temperature has been observed for the blend with 50 mol% PVA-50 mol% PVP complexed with 40 mol% NH4SCN. The activation energy has been found to be minimum (0.24 eV) for this sample. Wagner’s polarization technique shows that the charge transport in these blend films is predominantly due to ions. Using the highest conductivity blend polymer electrolyte, a proton battery has been fabricated and its discharge characteristics have been studied.  相似文献   

18.
Inorganic-organic hybrid electrolytes were prepared by the mechanochemical method using the Li+ ion conductive 70Li2S·30P2S5 glass and various alkanediols. Local structure of the prepared electrolytes was analyzed by FT-IR and Raman spectroscopy. The effects of the proportion and chain length of alkanediols on conductivity of the hybrid electrolytes were investigated. The hybrid electrolyte with 2 mol.% of 1,4-butanediol exhibited the conductivity of 9.7 × 10− 5 S cm− 1 at room temperature and the unity of lithium ion transference number. The use of alkanediols with shorter chain length was effective in increasing conductivity of hybrid electrolytes. The electrolyte using ethyleneglycol showed the highest conductivity of 1.1 × 10− 4 S cm− 1 at room temperature. Lowering glass transition temperature by incorporation of alkanediols is responsible for the enhancement of conductivity of hybrid electrolytes.  相似文献   

19.
A polymer blend electrolyte based on polyvinyl alcohol (PVA) and polyacrylonitrile (PAN) was prepared by a simple solvent casting technique in different compositions. The ionic conductivity of polymer blend electrolytes was investigated by varying the PAN content in the PVA matrix. The ionic conductivity of polymer blend electrolyte increased with the increase of PAN content. The effect of lithium salt concentrations was also studied for the polymer blend electrolyte of high ionic conductivity system. A maximum ionic conductivity of 3.76×10−3 S/cm was obtained in 3 M LiClO4 electrolyte solution. The effect of ionic conductivity of polymer blend electrolyte was measured by varying the temperature ranging from 298 to 353 K. Linear sweep voltammetry and DC polarization studies were carried out to find out the stability and lithium transference number of the polymer blend electrolyte. Finally, a prototype cell was assembled with graphite as anode, LiMn2O4 as cathode, and polymer blend electrolyte as the electrolyte as well as separator, which showed good compatibility and electrochemical stability up to 4.7 V.  相似文献   

20.
Vijaya  N.  Selvasekarapandian  S.  Sornalatha  M.  Sujithra  K.S.  Monisha  S. 《Ionics》2017,23(10):2799-2808

Research has been undertaken to develop polymer electrolytes based on biodegradable natural polymers such as cellulose acetate, starch, gelatin, and chitosan, which are being used as polymer hosts for obtaining new polymer electrolytes for their applications in various electrochemical devices such as batteries, sensors, and electrochromic windows. Pectin is a naturally available material which is extracted from the skin of citrus fruits. Pectins, also known as pectic polysaccharides, are rich in galacturonic acid. The present study focuses on the proton-conducting polymer electrolytes based on the biopolymer pectin doped with ammonium chloride (NH4Cl) and ammonium bromide (NH4Br) prepared by solution casting technique. The prepared membranes are characterized using XRD, FTIR, and AC impedance techniques to study their complexation behavior, amorphous nature, and electrical properties. The conductivity of pure pectin membrane has been found to be 9.41 × 10−7 S cm−1. The polymer systems with 30 mol% NH4Cl-doped pectin and 40 mol% NH4Br-doped pectin have been found to have maximum ionic conductivity of 4.52 × 10−4 and 1.07 × 10−3 S cm−1, respectively. The conductivity value has increased by three orders of magnitude compared to pure pectin membrane. The dielectric behavior of both the systems has been explained using dielectric permittivity and electric modulus spectra.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号