首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
The set of starting tri-, di- and monoorganotin(IV) halides containing N,C,N-chelating ligand (LNCN = {1,3-[(CH3)2NCH2]2C6H3}) has been prepared (1-5) and two compounds structurally characterized ([LNCNPh2Sn]+I3 (1c), LNCNSnBr3 (5)) in the solid state. These compounds were reacted with KF with 18-crown-6, NH4F or LCNnBu2SnF to give derivatives containing fluorine atom(s). Triorganotin(IV) fluorides LNCNMe2SnF (2a) and LNCNnBu2SnF (3a) revealed monomeric structural arrangement with covalent Sn-F bond both in the coordinating and non-coordinating solvents, except the behaviour of 3a that was ionized in the methanol solution at low temperature. The products of fluorination of LNCNSnPhCl2 (4) and 5 were described by NMR in solution as the ionic hypervalent fluorostannates or the oligomeric species reacting with chloroform, methanol or moisture to zwitterionic monomeric stannate LNCN(H)+SnF4 (5c), which was confirmed by XRD analysis in the solid state.  相似文献   

2.
A Pd2dba3/P(i-BuNCH2CH2)3N catalyzed one-pot synthesis of unsymmetrically substituted trans-4-N,N-diarylaminostilbenes and both symmetrically and unsymmetrically substituted N,N-diarylaminostyrene derivatives is reported. The procedure involves two or more palladium catalyzed sequential coupling reactions (an amination and an inter-molecular Heck reaction) in one-pot using the same catalyst system with two different aryl halides, including aryl chlorides and hetero aryl halides as the coupling partners.  相似文献   

3.
We found a suitable condition for the effective alkynylation of N-tosylimines with aryl acetylenes. The reaction of N-tosylimines and aryl acetylenes in the presence of ZnBr2 and DIEA (N,N-diisopropylethylamine) in CH3CN afforded the desired N-tosyl propargylamines in moderate to good yields.  相似文献   

4.
The tetraruthenium cluster complex [Ru444-dmpu)(CO)10], H2dmpu = N,N′-bis(6-methylpyrid-2-yl)urea, has been prepared by treating [Ru3(CO)12] with H2dmpu in toluene at reflux temperature. An X-ray diffraction study has determined that this cluster has a butterfly metallic skeleton hold up by a doubly-deprotonated N,N′-bis(6-methylpyrid-2-yl)urea ligand (dmpu). This ligand has the pyridine N atoms attached to the wing-tip Ru atoms and the amido N atoms spanning Ru-Ru wing-edges, in such a way that the cluster has C2 symmetry. The donor atoms of doubly-deprotonated N,N′-dipyrid-2-ylureas seem to be appropriately arranged to hold butterfly tetranuclear clusters.  相似文献   

5.
The coordinating properties of N-o-chlorobenzamido-meso-tetraphenylporphyrin (N-NHCO(o-Cl)C6H4-Htpp; 11) have been investigated for the Zn2+ ion. Insertion of Zn results in the formation of the zinc complex Zn(N-NCO(o-Cl)C6H4-tpp)(MeOH) · MeOH (12 · MeOH). The diamagnetic 12 · MeOH can be transformed into the diamagnetic Zn(N-NHCO(o-Cl)C6H4-tpp)Cl · CH2Cl2 (13 · CH2Cl2) in a reaction with aqueous hydrogen chloride (2%). X-ray structures for 12 · MeOH and 13 · CH2Cl2 have been determined. The coordination sphere around the Zn2+ ion in 12 · MeOH is a distorted trigonal bipyramid with N(2), N(4) and O(2) lying in the equatorial plane, whereas for the Zn2+ ion in 13 · CH2Cl2, it is a square-based pyramid in which the apical site is occupied by the Cl(1) atom.  相似文献   

6.
Yoshikatsu Ito 《Tetrahedron》2007,63(15):3108-3114
Photocarboxylation of 1,1-diphenylethylene with N,N,N′,N′-tetramethylbenzidine (TMB) in MeCN under bubbling of CO2 proceeded with high catalytic efficiency, giving 3,3-diphenylacrylic acid (DPA) and 3-hydroxy-3,3-diphenylpropionic acid (20). The turnover number (TON=(DPA+20)/TMB) reached 17. Similarly, 1-phenyl-1-cyclohexene yielded cis-2-acetamido-2-phenylcyclohexanecarboxylic acid with TON 5.9. As compared with related N,N-dimethylaniline derivatives, TMB is more resistant to photodecomposition, has the much larger absorbance in the S0→S1 transition, and has the lower quenching efficiency by CO2. Probably these factors are partly responsible for the high TON observed for TMB.  相似文献   

7.
The reaction of N9,N9′-(tri or tetramethylene)-bisadenines (Ade2Cx; x = 3 or 4) in HCl 2 M at 50 °C with MCl2 · 2H2O [M = Zn(II), Cd(II)] yields outer sphere compounds like the previously described [(H-Ade)2C3][ZnCl4] · H2O (3) and [(H-Ade)2C3]2[Cd2Cl8(H2O)2] · 4H2O (4) for Ade2C3 and the new {[(H-Ade)2C4][Cd2Cl6(H2O)2] · 2H2O}n (5) for Ade2C4. On the other hand, only in case of Zn(II) complexes by changing [HCl] to 0.1 M, the inner sphere compounds [H-(Ade)2C3(ZnCl3)] (6) and [H-(Ade)2C4(ZnCl3)] · 1.5H2O (7) are obtained. X-ray diffraction study of compound 6, which represents the first inner sphere complex with a N9,N9′-bisadenine, shows a zwitterionic form with one adenine ring protonated at N(1) while the other ring is coordinated via N(7) to a ZnCl3 moiety as in other alkyl-adenine derivatives. In addition, with Ade2C4, is also possible to obtain another inner sphere complex: [(H-Ade)2C4(ZnCl3)2] · 3H2O (8).  相似文献   

8.
Mixed-ligand zinc complexes with N,N,N′,N′-tetramethylethylenediamine (tmen) and R-salicylaldehyde N(4)-allyl thiosemicarbazones (R: 3-OCH3 (L1), 5-Br(L2)), [ZnL1,2(tmen)], were synthesized and the complexes were characterized by elemental analysis, atomic absorption spectrometer, magnetic susceptibility, molar conductivity, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) mass spectra and IR, UV–Vis, 1H NMR and 15N spectroscopies. Crystal of [ZnL2(tmen)] have a slightly distorted square pyramid involving O, N, S atoms of thiosemicarbazone and one N atom of tmen in basal plane and the other N atom of tmen in apex of the pyramid. The non-coordinated allyl group is disordered.  相似文献   

9.
Layered zirconium benzylamino-N,N-dimethylphosphonate phosphate (ZBMPA) was prepared by the reaction of zirconyl chloride with benzylamino-N,N-dimethylphosphonic acid (H2BMPA) and phosphoric acid in the presence of hydrofluoric acid. The intercalation of n-alkylamines (n-butylamine, n-heptylamine and n-decylamine) into ZBMPA was primarily investigated at room temperature. These materials were characterized by elemental analysis, ICP, XRD, SEM, FT-IR, Raman spectra, TG and DSC. The composition of ZBMPA is Zr(HPO4)(C6H5CH2N(CH2PO3)2)0.5 · 2.0H2O. The interlayer distance of ZBMPA, n-butylamine, n-heptylamine and n-decylamine intercalation compounds is 2.03, 2.58, 2.52 and 3.17 nm, respectively. ZBMPA and the n-alkylamine intercalation compounds are different in the morphology and vibration spectra. Thermogravimetries of all materials obtained reveal three step mass losses at temperatures of up to 1000 °C. These results indicate that n-alkylamines are intercalated into the galleries of host ZBMPA.  相似文献   

10.
Treatment of a benzene or a CH2Cl2 solution of bis(N,N-dimethylcarbamoylseleno)methanes with SnCl4 afforded β-1,3,5-triselenanes, and the key intermediates, acylselonium ions and selenoaldehydes, were successfully trapped by using allyltrimethylsilane or 2,3-dimethyl-1,3-butadiene to obtain the allylation products or the cycloadducts, respectively.  相似文献   

11.
MgMe2 (1) was found to react with 1,4-diazabicyclo[2.2.2]octane (dabco) in tetrahydrofuran (thf) yielding a binuclear complex [{MgMe2(thf)}2(μ-dabco)] (2). Furthermore, from reactions of MgMeBr with diglyme (diethylene glycol dimethyl ether), NEt3, and tmeda (N,N,N′,N′-tetramethylethylenediamine) in etheral solvents compounds MgMeBr(L), (L = diglyme (5); NEt3 (6); tmeda (7)) were obtained as highly air- and moisture-sensitive white powders. From a thf solution of 7 crystals of [MgMeBr(thf)(tmeda)] (8) were obtained. Reactions of MgMeBr with pmdta (N,N,N′,N″,N″-pentamethyldiethylenetriamine) in thf resulted in formation of [MgMeBr(pmdta)] (9) in nearly quantitative yield. On the other hand, the same reaction in diethyl ether gave MgMeBr(pmdta) · MgBr2(pmdta) (10) and [{MgMe2(pmdta)}7{MgMeBr(pmdta)}] (11) in 24% and 2% yield, respectively, as well as [MgMe2(pmdta)] (12) as colorless needle-like crystals in about 26% yield. The synthesized methylmagnesium compounds were characterized by microanalysis and 1H and 13C NMR spectroscopy. The coordination-induced shifts of the 1H and 13C nuclei of the ligands are small; the largest ones were found in the tmeda and pmdta complexes. Single-crystal X-ray diffraction analyses revealed in 2 a tetrahedral environment of the Mg atoms with a bridging dabco ligand and in 8 a trigonal-bipyramidal coordination of the Mg atom. The single-crystal X-ray diffraction analyses of [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) showed them to be monomeric with five-coordinate Mg atoms. The square-pyramidal coordination polyhedra are built up of three N and two C atoms in 12 and three N and two Br atoms in 13. The apical positions are occupied by methyl and bromo ligands, respectively. Temperature-dependent 1H NMR spectroscopic measurements (from 27 to −80 °C) of methylmagnesium bromide complexes MgMeBr(L) (L = thf (4); diglyme (5); NEt3 (6); tmeda (7)) in thf-d8 solutions indicated that the deeper the temperature the more the Schlenk equilibria are shifted to the dimethylmagnesium/dibromomagnesium species. Furthermore, at −80 °C the dimethylmagnesium compounds are predominant in the solutions of Grignard compounds 4-6 whereas in the case of the tmeda complex7 the equilibrium constant was roughly estimated to be 0.25. In contrast, [MgMeBr(pmdta)] (9) in thf-d8 revealed no dismutation into [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) even up to −100 °C. In accordance with this unexpected behavior, 1:1 mixtures of 12 and 13 were found to react in thf at room temperature yielding quantitatively the corresponding Grignard compound 9. Moreover, the structures of [MgMeBr(pmdta)] (9c), [MgMe2(pmdta)] (12c), and [MgBr2(pmdta)] (13c) were calculated on the DFT level of theory. The calculated structures 12c and 13c are in a good agreement with the experimentally observed structures 12 and 13. The equilibrium constant of the Schlenk equilibrium (2 9c ? 12c + 13c) was calculated to be Kgas = 2.0 × 10−3 (298 K) in the gas phase. Considering the solvent effects of both thf and diethyl ether using a polarized continuum model (PCM) the corresponding equilibrium constants were calculated to be Kthf = 1.2 × 10−3 and Kether = 3.2 × 10−3 (298 K), respectively.  相似文献   

12.
Three diruthenium(III) compounds Ru2(L)4Cl2, where L is mMeODMBA (N,N′-dimethyl-3-methoxybenzamidinate, 1a), DiMeODMBA (N,N′-dimethyl-3,5-dimethoxy benzamidinate, 1b), or DEBA (N,N′-diethylbenzamidinate, 1c), were prepared from the reactions between Ru2(OAc)4Cl and respective HL under reflux conditions. Metathesis reactions between 1 and LiC2Y resulted in bis-alkynyl derivatives Ru2(L)4(C2Y)2 [Y=Ph (2), SiMe3 (3), SiiPr3 (4) and C2SiMe3 (5)]. The parent compounds 1 are paramagnetic (S=1), while bis-alkynyl derivatives 2-5 are diamagnetic and display well-solved 1H- and 13C-NMR spectra. Molecular structures of compounds 1b, 1c, 2c, 3c and 4b were established through single crystal X-ray diffraction studies, which revealed RuRu bond lengths of ca. 2.32 Å for parent compounds 1 and 2.45 Å for bis-alkynyl derivatives. Cyclic voltammograms of all compounds feature three one-electron couples: an oxidation and two reductions, while the reversibility of observed couples depends on the nature of axial ligands.  相似文献   

13.
Catalytic hydrogenation of (2-nitrophenyl)acetonitriles bearing an electron-withdrawing substituent α to the nitrile, using Pd/C and (Ph3P)4Pd, affords N-hydroxy-2-aminoindoles in good to excellent yields. (Ph3P)4Pd decreases the reduction rate of the intermediate hydroxylamine and acts as a catalyst during the cyclization onto the nitrile.  相似文献   

14.
Reaction of five N,N′-bis(aryl)pyridine-2,6-dicarboxamides (H2L-R, where H2 denotes the two acidic protons and R (R = OCH3, CH3, H, Cl and NO2) the para substituent in the aryl fragment) with [Ru(trpy)Cl3](trpy = 2,2′,2″-terpyridine) in refluxing ethanol in the presence of a base (NEt3) affords a group of complexes of the type [RuII(trpy)(L-R)], each of which contains an amide ligand coordinated to the metal center as a dianionic tridentate N,N,N-donor along with a terpyridine ligand. Structure of the [RuII(trpy)(L-Cl)] complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on the [RuII(trpy)(L-R)] complexes shows a Ru(II)–Ru(III) oxidation within 0.16–0.33 V versus SCE. An oxidation of the coordinated amide ligand is also observed within 0.94–1.33 V versus SCE and a reduction of coordinated terpyridine ligand within −1.10 to −1.15 V versus SCE. Constant potential coulometric oxidation of the [RuII(trpy)(L-R)] complexes produces the corresponding [RuIII(trpy)(L-R)]+ complexes, which have been isolated as the perchlorate salts. Structure of the [RuIII(trpy)(L-CH3)]ClO4 complex has been determined by X-ray crystallography. All the Ru(III) complexes are one-electron paramagnetic, and show anisotropic ESR spectra at 77 K and intense LMCT transitions in the visible region. A weak ligand-field band has also been shown by all the [RuIII(trpy)(L-R)]ClO4 complexes near 1600 nm.  相似文献   

15.
The preparation of N,N′-diarylalkanediamides from the respective aliphatic dicarboxylic acids and 4-nitroaniline via microwave-prompted reactions is presented. The most positive effect of microwave irradiation was observed for N,N-bis(4-nitrophenyl)butanediamide. Anion binding studies on the obtained diamides were carried out in DMSO and acetonitrile using UV-vis and 1H NMR spectroscopy. A mechanism for selective fluoride recognition by N,N-bis(4-nitrophenyl)butanediamide in DMSO is proposed.  相似文献   

16.
The use of succinamic acid (H2sucm) in CuII/N,N′,N″-donor [2,2′:6′,2″-terpyridine (terpy), 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (dmbppy)] reaction mixtures yielded compounds [Cu(Hsucm)(terpy)]n(ClO4)n (1), [Cu(Hsucm)(terpy)(MeOH)](ClO4) (2), [Cu2(Hsucm)2(terpy)2](ClO4)2 (3), [Cu(ClO4)2(terpy)(MeOH)] (4), [Cu(Hsucm)(dmbppy)]n(NO3)n·3nH2O (5.3nH2O), and [CuCl2(dmbppy)]·H2O (6·H2O). The succinamate(−1) ligand exists in four different coordination modes in the structures of 13 and 5, i.e., the μ2OO′:κO″ in 1 and 5 which involves asymmetric chelating coordination of the carboxylato group and ligation of the amide O-atom leading to 1D coordination polymers, the μ22OO′ in 3 which involves asymmetric chelating and bridging coordination of the carboxylato group, and the asymmetric chelating mode in 2. The primary amide group, either coordinated in 1 and 5, or uncoordinated in 2 and 3, participate in hydrogen bonding interactions, leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of complex 5·3nH2O was monitored by TG/DTG and DTA measurements.  相似文献   

17.
The combination of the 5-N-tert-butoxycarbonyl (Boc) group of laurylthio sialoside and cyclopentyl methyl ether (CPME) as a solvent enhanced the reactivity and α-selectivity of the sialyl donor during sialylation. Selective deprotection of the N-Boc group of sialoside, including an acid-sensitive isopropylidene function, was successfully achieved by Yb(OTf)3-SiO2. Transformation of N,N-Ac,Boc into an N-acetylglycolyl group of sialoglycoside was easily performed via selective N-deacylation of the mixed Ac-N-Boc carbamate, subsequent Boc group removal, and acylation.  相似文献   

18.
Novel di-, tetra- and octadeuterated derivatives of mono-N-alkylated diaminopropanes, spermidines, spermines, symmetrically bis-N-alkylated spermines and unsymmetrically bis-N-alkylated spermines were synthesized. Deuterium labels were introduced into the RHNCH2CH2CN intermediate either by exchanging the protons next to the nitrile group under basic conditions with D2O-EtOD mixture or/and by reducing the nitrile group to a CD2-NH2 fragment with LiAlD4.  相似文献   

19.
The Schiff base compound, N,N′-bis(trifluoromethylbenzylidene)ethylenediamine (C18H14F6N2) (1), CF3C6H4CHNCH2CH2NCHC6H4CF3 has been synthesized by adding a solution of ethylenediammine (en), 0.1 mmol in chloroform to 4-(trifluoromethyl)-benzaldehyde, CF3C6H4CHO (0.2 mmol) and the product was crystallized in ethanol with the mp, 109.2 °C and 75% yield. The crystal structure was investigated by a single-crystal X-ray diffraction study at 150 K. The compound crystallizes in monoclinic space group, P21/c with a = 9.295(3), b = 5.976(5), c = 15.204(9) Å and α = 90°, β = 96.56(5)° and γ = 90°. The crystal structure is stabilized by intermolecular CH · · · F hydrogen bonds. The asymmetric unit contains only one-half of the molecule related to the center of symmetry coinciding with C(1)-C(1′) and as a whole, the title molecule is in the staggered conformation. The phenyl rings and the CN imine bonds are co-planar. The infrared spectrum showed a sharp peak at 1640 cm−1 which is typical of the conjugated CN stretching and strong peaks at 800-1400 cm−1 regions are due to the C-C and C-H stretching modes. Electronic absorption spectra exhibits strong absorption in the UV region (240 nm wavelength) which have been ascribed to , and electronic transitions. The 1H NMR spectra showed three distinct peaks at 2.5, 7.8 and 8.5 ppm which are assigned based on the splitting of resonance signals and are clearly confirmed by the X-ray molecular structure. The aromatic protons appear at about 7.8 ppm and the imine protons at 8.5 ppm. The sharp singlet at about 3.95 ppm is assigned to the CH2-CH2 protons. Mass spectra of the titled compound showed the molecular ion peak at m/e 372 (M+), and fragments at m/e 353 (M-F), 342 (M-2F), 200 (M-CF3C6H4CHN), 186 (M-CF3C6H4CHNCH2).  相似文献   

20.
The solvent-free reactions of fullerenes and N-alkylglycines with and without aldehydes (RCHO) 2a-e under high-speed vibration milling (HSVM) conditions have been investigated. Fulleropyrrolidines 4a-e (C60(CH2N(CH3)CHR), R=H (4a), C6H5 (4b), p-NO2-C6H4 (4c), p-CH3O-C6H4 (4d), p-(CH3)2N-C6H4 (4e)) were obtained in moderate yields from reactions of C60 with aldehydes 2a-e and N-methylglycine (Prato reaction). In all these solvent-free reactions, 4a was found to be formed besides 4b-e, indicating that fullerenes can react with N-substituted glycines in the absence of aldehyde to give fulleropyrrolidines. For this novel reaction, a possible reaction mechanism involving an electron transfer process has been proposed. Intrigued by this observation, the dependence of the yield on the reagent ratio for the reaction of C60 with paraformaldehyde and/or N-methylglycine was examined to search the optimal conditions. The reaction of C70 with paraformaldehyde and/or N-methylglycine under HSVM conditions was also studied and was found to give the positional isomers of [70]fulleropyrrolidines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号