首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yaqoob Z  Fingler J  Heng X  Yang C 《Optics letters》2006,31(12):1815-1817
We demonstrate, for what we believe to be the first time, the use of a 3 x 3 fiber-optic coupler to realize a homodyne optical coherence tomography (OCT) system for en face imaging of highly scattering tissues and turbid media. The homodyne OCT setup exploits the inherent phase shifts between different output ports of a 3 x 3 fiber-optic coupler to extract amplitude information of a sample. Our homodyne en face OCT system features a measured resolution of 14 microm axially and 9.4 microm laterally with a 90 dB signal-to-noise ratio at 10 micros integration time. En face OCT imaging of a stage 52 Xenopus laevis was successfully demonstrated at a depth of 600 microm within the sample.  相似文献   

2.
Liu X  Cobb MJ  Chen Y  Kimmey MB  Li X 《Optics letters》2004,29(15):1763-1765
We developed a miniature endoscope that is capable of rapid lateral scanning and is suitable for real-time forward-imaging optical coherence tomography (OCT). The endoscope has an outer diameter of 2.4 mm, consisting of a miniature tubular lead zirconate titanate (PZT) actuator, a single-mode fiber-optic cantilever, and a graded-index lens. Rapid lateral scanning at 2.8 kHz is achieved when the fiber-optic cantilever is resonated with the PZT actuator. This allows OCT imaging to be performed by fast lateral beam scanning followed by slow depth scanning, which is different from the conventional OCT imaging sequence. Real-time OCT imaging with the endoscope operated in the new image acquisition sequence at 6 frames/s is demonstrated.  相似文献   

3.
We experimentally and theoretically investigated the performance of a fiber-optic based Fourier-domain common-path optical coherence tomography (OCT). The fiber-optic common-path OCT operated at the 840-nm center wavelength. The resolution of the system was 8.8 μm (in air) and the working depth using a bare fiber probe was approximately 1.5 mm. The signal-to-noise ratio (SNR) of the system was analyzed. OCT images obtained by the system were also presented.  相似文献   

4.
Xi J  Chen Y  Zhang Y  Murari K  Li MJ  Li X 《Optics letters》2012,37(3):362-364
We report an all-fiber-optic scanning, multimodal endomicroscope capable of simultaneous optical coherence tomography (OCT) and two-photon fluorescence (TPF) imaging. Both imaging modalities share the same miniature fiber-optic scanning endomicroscope, which consists of a double-clad fiber with a core operating in single mode at both the OCT (1310 nm) and two-photon excitation (1550 nm) wavelengths, a piezoelectric two-dimensional fiber-optic beam scanner, and a miniature aspherical compound lens suitable for simultaneous acquisition of en face OCT and TPF images. A fiber-optic wavelength division multiplexer was employed in the integrated platform to combine the low coherence OCT light source and the femtosecond two-photon excitation laser into the same optical path. Preliminary imaging results of cell cultures and mouse tissue ex vivo demonstrate the feasibility of simultaneous real-time OCT and TPF imaging in a scanning endomicroscopy setting for the first time.  相似文献   

5.
Li X  Ko TH  Fujimoto JG 《Optics letters》2001,26(23):1906-1908
We describe a miniature fiber-optic Doppler imaging catheter for integrated functional and structural optical coherence tomography (OCT) imaging. The Doppler catheter can map blood flow within a vessel as well as image vessel wall structures. A prototype Doppler catheter has been developed and demonstrated for measuring the intraluminal velocity profile in a vessel phantom (conduit). A simple mathematical model is demonstrated to estimate the total flow rate. This estimation technique also enables the spatial range of flow measurements to be extended by approximately two times the normal OCT image-penetration depth. The Doppler OCT catheter could be a powerful device for cardiovascular imaging.  相似文献   

6.
Optimal interferometer designs for optical coherence tomography   总被引:2,自引:0,他引:2  
Rollins AM  Izatt JA 《Optics letters》1999,24(21):1484-1486
We introduce a family of power-conserving fiber-optic interferometer designs for low-coherence reflectometry that use optical circulators, unbalanced couplers, and (or) balanced heterodyne detection. Simple design equations for optimization of the signal-to-noise ratio of the interferometers are expressed in terms of relevant signal and noise sources and measurable system parameters. We use the equations to evaluate the expected performance of the new configurations compared with that of the standard Michelson interferometer that is commonly used in optical coherence tomography (OCT) systems. The analysis indicates that improved sensitivity is expected for all the new interferometer designs, compared with the sensitivity of the standard OCT interferometer, under high-speed imaging conditions.  相似文献   

7.
Choma MA  Yang C  Izatt JA 《Optics letters》2003,28(22):2162-2164
We describe fiber-based quadrature low-coherence interferometers that exploit the inherent phase shifts of 3 x 3 and higher-order fiber-optic couplers. We present a framework based on conservation of energy to account for the interferometric shifts in 3 x 3 interferometers, and we demonstrate that the resulting interferometers provide the entire complex interferometric signal instantaneously in homodyne and heterodyne systems. In heterodyne detection we demonstrate the capability for extraction of the magnitude and sign of Doppler shifts from the complex data. In homodyne detection we show the detection of subwavelength sample motion. N x N (N > 2) low-coherence interferometer topologies will be useful in Doppler optical coherence tomography (OCT), optical coherence microscopy, Fourier-domain OCT, optical frequency domain reflectometry, and phase-referenced interferometry.  相似文献   

8.
We propose and demonstrate an optical voltage sensing scheme based on a macrobending optical fiber in a ratiometric power measurement system. This novel approach to sensing has not been utilized before and has the advantage that the sensor involves simple fabrication compared to existing fiber-optic voltage sensors. To prove the feasibility of such a fiber-optic sensor, a sensor for a voltage range from 0∼100 V is demonstrated, with a resolution of 0.5 V. The sensor is robust, linear, and shows a competitive measurement resolution. The sensor can be easily scaled to suit other voltage levels and be effectively combined with optical current sensors.  相似文献   

9.
A signal-to-noise ratio (SNR) analysis is presented for optical coherence tomography (OCT) signals in which time-domain performance is compared with that of the spectral domain. A significant SNR gain of several hundredfold is found for acquisition in the spectral domain. The SNR benefit is demonstrated experimentally in a hybrid time-domain-spectral-domain OCT system.  相似文献   

10.
An improved polarization-sensitive optical coherence tomography (OCT) system is developed and used to measure birefringence in porcine myocardium tissue and produce two-dimensional birefringence mapping of the tissue. Signal-to-noise issues that cause systematic measurement errors are analyzed to determine the regime in which such measurements are accurate. The advantage of polarization-sensitive OCT systems over standard OCT systems in avoiding image artifacts caused by birefringence is also demonstrated.  相似文献   

11.
基于光放大的光纤Fizeau应变传感器频分复用系统   总被引:8,自引:0,他引:8       下载免费PDF全文
江建  饶云江  周昌学  朱涛 《物理学报》2004,53(7):2221-2225
提出了一种可频分复用基于光放大的光纤Fizeau应变传感器的方法,从原理上解决了现有光纤Fabry-Perot传感器固有的两大弱点:信号弱和复用难.利用掺铒光纤的放大作用,既形成宽带光源,又放大了微弱的信号.描述了该应变传感器系统的结构、原理及实验结果.实验表明该复用传感器应变测量精度可达±10με,可满足实际应用的要求. 关键词: 光纤传感器 光纤应变传感器 掺铒光纤 复用  相似文献   

12.
A performance analysis of signal to noise ratio for an optical coherence tomography system with quadrature detection and a semiconductor optical amplifier in the sample arm is discussed. The results are compared and discussed in relation to a conventional OCT system (without optical amplification). An increase of the signal to noise ratio up to 14 dB at a depth of 0.5 mm is obtained compared to the system without the optical amplifier. Overall, an improvement was demonstrated for signal coming from deeper regions within the samples. Arterial plaque from a myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbit is visualized and characterized using this system. Improvement of signal to noise ratio increases the penetration depth possible for OCT images, from 1 mm to 2 mm within the vessel wall of an artery. Preliminary results show that vulnerable plaque with fibrous cap, macrophage accumulations and calcification in the arterial tissue are measurable with this OCT system.  相似文献   

13.
A novel extrinsic fiber-optic Fabry-Perot interferometric strain sensor system is demonstrated based on the simultaneous use of the amplified spontaneous emission and optical amplification. The improvement of 3~4 orders of magnitude in signal level can be achieved.  相似文献   

14.
Tang S  Zhou Y  Chan KK  Lai T 《Optics letters》2011,36(24):4800-4802
A multiscale multiphoton microscopy (MPM) and optical coherence tomography (OCT) system has been developed using a sub-10 fs Ti:sapphire laser. The system performs cross-sectional OCT imaging over millimeter field-of-view and en-face high-resolution MPM imaging with submicrometer resolution from the same sample location. With fish cornea, we have demonstrated cross-sectional imaging of cornea tissue layers using OCT, and the zoom-in imaging of cells and collagen fibers in each layer using MPM. The multiscale MPM/OCT system shows the potential of a rapid coarse scan to search for abnormal regions and the subsequent fine zoom-in imaging for diagnosis.  相似文献   

15.
We report on an implementation of coherence revival-based heterodyne swept source optical coherence tomography that is capable of simultaneously imaging the anterior and posterior eye. A polarization-encoded sample arm was used to efficiently focus orthogonal polarizations on the anterior segment and retina. Depth encoding was achieved using coherence revival, which allows for multiple depths within a sample to be simultaneously imaged and frequency encoded by carefully controlling the optical pathlength of each sample path. This design is a significant step toward whole-eye optical coherence tomography (OCT), which would enable customized ray-traced modeling of patient eyes to improve refractive surgical interventions and eliminate optical artifacts in retinal OCT diagnostics. We demonstrated the feasibility of this system for in vivo imaging by simultaneously acquiring images of the anterior segments and retinas in healthy human volunteers.  相似文献   

16.
We describe high-speed Fourier domain optical coherence tomography (OCT) using optical demultiplexers (ODs) for spectral dispersion. The OD enables separation of a narrow spectral band of 14 GHz (0.11 nm) from a broadband incident light at 256 different frequencies in 25.0 GHz intervals centered at 192.2 THz (1559.8 nm). OCT imaging of 60,000,000 axial scans per second was achieved through parallel signal acquisition using 256 balanced photoreceivers to simultaneously detect all the output signals from the ODs in a Fourier domain OCT system. OCT imaging at a 16 kHz frame rate, 1100 A-lines per frame, 3 mm depth range, and 23 microm resolution was demonstrated using a resonant scanner for lateral scanning.  相似文献   

17.
We demonstrate the theoretical and experimental results of using a single prism in the rapid-scanning optical delay line of an optical coherence tomography (OCT) system for compensating the mismatches of the first- and second-order group delay dispersion (GDD) between the reference and sample arms. The analytical expressions for the first- and second-order GDD are derived based on the typically designed system configuration. Numerical results in varying various parameters are shown. An optimized set of parameters for efficient dispersion compensation in a practical fiber-based OCT system is obtained. The numerical result of the dispersion compensation is demonstrated. Also, the experimental implementation of such a dispersion compensation method is illustrated with the conditions similar to the numerical calculations. The compensation result is quite satisfactory  相似文献   

18.
A surface plasmon resonance (SPR) sensing system based on the optical cavity enhanced detection tech-nique is experimentally demonstrated. A fiber-optic laser cavity is built with a SPR sensor inside. By measuring the laser output power when the cavity is biased near the threshold point, the sensitivity, defined as the dependence of the output optical intensity on the sample variations, can be increased by about one order of magnitude compared to that of the SPR sensor alone under the intensity interrogation scheme. This could facilitate ultra-high sensitivity SPR biosensing applications. Further system miniaturization is possible by using integrated optical components and waveguide SPR sensors.  相似文献   

19.
本文从理论和实验上分析了存在拍频噪音时时域光学相干层析系统的噪音特性,给出了拍频噪音的具体估算方法.建立了描述一般时域光学相干层析系统实际噪音的简化模型,并给出了测量和寻找平衡探测光学相干层析系统最佳工作状态的方法.理论计算表明,平衡探测光学相干层析系统的信噪比受限于拍频噪音,理想情况下,最大信噪比可达100 dB左右|同时实验表明,如果实际的系统不能完全消除冗余噪音,其信噪比可能要比理论值小10~20 dB.本文的主要结果将可直接用于时域光学相干层析系统工作状态的测试和诊断当中,对频域光学相干层析系统噪音性能的分析和优化也将有所裨益.  相似文献   

20.
The aim of this study is to provide accurately focused, high-resolution in vivo human retinal depth images using an optically deviated focusing method with spectral-domain optical coherence tomography (SD-OCT) system. The proposed method was applied to increase the retinal diagnosing speed of patients with various values of retinal distances (i.e., the distance between the crystalline eye lens and the retina). The increased diagnosing speed was facilitated through an optical modification in the OCT sample arm configuration. Moreover, the optical path length matching process was compensated using the proposed optically deviated focusing method. The developed system was mounted on a bench-top cradle to overcome the motion artifacts. Further, we demonstrated the capability of the system by carrying out in vivo retinal imaging experiments. The clinical trials confirmed that the system was effective in diagnosing normal and abnormal retinal layers as several retinal abnormalities were identified using non-averaged single-shot OCT images, which demonstrate the feasibility of the method for clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号