首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One asymmetric transformation reaction of L-proline (L-Pro) to D-proline was studied by a home-made capillary array electrophoresis (CAE) for the first time. The aldehyde catalysts and the organic acid solvents for the asymmetric transformation reaction were rapidly screened and the enantiomeric excess values of the asymmetric product of L-Pro were directly obtained from the electrophoretogram of CAE.  相似文献   

2.
Wang J  Sun G  Bai J  Wang L 《The Analyst》2003,128(12):1434-1438
A capillary array electrophoresis system with a rotary confocal fluorescence scanner is reported. A high speed direct current rotary motor, combined with a rotary encoder and a reflection mirror, has been designed to direct the excitation laser beam precisely to a round array of capillaries which are symmetrically distributed around the motor. The rotary encoder is introduced to accurately orientate the position of each capillary and its output signal triggers the data acquisition system to record the fluorescence signal corresponding to each capillary. Separation of enantiomers of glutamic acid, methionine and tryptophan with different additives are demonstrated by this system. The experimental results indicate that this setup can be used to optimize separation methods for capillary electrophoresis as quickly as possible.  相似文献   

3.
Liu K  Wang H  Bai J  Wang L 《Analytica chimica acta》2008,622(1-2):169-174
A capillary array electrophoresis (CAE) with confocal rotary scanner for high-throughput carboxytetramethylrhodamine succinimidyl ester (TAMRA)-labeled amino acid (AA) analysis is presented. Performance of the CAE setup was evaluated with AA samples. Up to 128 capillaries could be detected in parallel. For the first time, the device was applied to separate the enantiomers of isoleucine, cysteine, and glutamic acid with cyclodextrin-modified electrolytes by capillary zone electrophoresis. Baseline separation of seven AAs is also demonstrated using micellar electrokinetic chromatography method.  相似文献   

4.
Research to the racemization reaction of L-amino acids is performed through a laboratory-made 16-channel capillary array electrophoresis. The impact factors such as catalyst, solvent, and reactive time which influenced the racemization reaction are screened, the experimental results proved that the capillary array electrophoresis is qualified as combinatorial enantiomeric screening system.  相似文献   

5.
This paper aimed at studying chiral symmetry-breaking phenomena in one crystal. Preferential crystallization of racemic asparagines was carried out in nonseeded stagnant solutions through slow cooling. By varying the supersaturation, only one transparent crystal could be obtained at enough low supersaturation of dl-asparagine, and the crystal was not pure enantiomer with crystal enantiomeric excess increasing inversely with the degree of supersaturation. Crystal enantiomeric excess can amount up to 85% in one transparent crystal. Because no secondary nucleation occurred except for stochastic primary nucleation, we suggest that primary nucleation and competition between l- and d-nuclei were considered to be a mechanism for asymmetry amplification. High-performance capillary electrophoresis coupled with laser-induced fluorescence was used to separate and quantify l- and d-asparagine and the enantiomeric excess value can be calculated according to their concentration.  相似文献   

6.
Determining the enantiomeric excess value of novel chiral compounds is of great importance in asymmetry synthesis. NMR1, HPLC and GC are the ordinary methods applied in this work. In recent years, capillary electrophoresis has been successfully used in chiral separation2. In this paper, we separated the enantiomer of (-pyrrolidinyl phenylpropanol (Figure 1) by capillary electrophoresis using (-cyclodextrin polymer as chiral selector. According to the ratio of peak area with migration time,…  相似文献   

7.
Separation of the enantiomers of chlorpheniramine and methadone in acidic buffers containing carboxymethyl-betacyclodextrin (CMCD) as chiral selector was investigated by capillary zone electrophoresis. For a range of pH and CMCD concentrations, the mobility difference and resolution of the enantiomers were determined. Then, conditions known to provide well resolved enantiomers and optimized chiral separation were applied to chiral continuous flow electrophoresis. In that approach, a thin film of fluid flowing between two parallel plates is employed as carrier for electrophoresis. The electrolytes and the sample are continuously admitted at one end of the electrophoresis chamber and are fractionated by an array of outlet tubes at the other. The number of pure enantiomeric fractions obtained by chiral continuous flow electrophoresis was found to be directly dependent on the enantiomeric mobility difference. For racemic chlorpheniramine separated in a betaine-acetic acid buffer at a total throughput of 5 mg/h, complete enantiomeric separation is shown to require a mobility difference of about 3 x 10(-9) m2/V s. Furthermore, compared to the previous investigations with hydroxypropyl-beta-cyclodextrin, CMCD was found to permit improved fractionation of methadone enantiomers. With a total racemic drug throughput of about 15 mg/h, continuous flow zone electrophoresis processing with CMCD as chiral selector is shown to have the potential of providing pure enantiomers on a mg/h scale. The results indicate that chiral capillary zone electrophoresis data can be employed as predictor for preparative scale chiral separations based upon continuous flow zone electrophoresis.  相似文献   

8.
Focusing on the demand from the food industry for fast and reliable alternative methods to control the quality of food products, we present in this paper a method for amino acid separation and glutamic acid quantification in complex matrices employing capillary electrophoresis with capacitively coupled contactless conductivity detection. We demonstrate by simulation and experimentally the use of organic solvents in sample preparation to prevent peak splitting and increase stacking in capillary electrophoretic separations of amino acids. Additionally, we obtained results for glutamic acid quantification comparable to those obtained via traditional methods used at industrial sites. We tested premium and low‐cost samples with large variations in their glutamic acid content, which demonstrated the wide range of applicability of the method presented herein. The results of the proposed capacitively coupled contactless conductivity detection based capillary electrophoresis method agreed with those obtained by an enzymatic detector and ultra high performance liquid chromatography coupled to tandem mass spectrometry, considering a confidence level of 95%.  相似文献   

9.
Direct chiral separation of chiral peptide nucleic acid (PNA) monomers has been achieved for the first time by capillary electrophoresis (CE) with charged cyclodextrins as chiral selectors added to the electrophoretic buffer. Selectively modified 6-deoxy-6-N-histamino-beta-cyclodextrin and sulfobutyl ether-beta-CD were successfully used as chiral selectors for the enantiomeric separation of chiral monomers based on different aminoethylamino acids bearing thymine or adenine as nucleobases. Chiral separations were obtained at low selector concentrations (1-3 mM) with good enantioselectivity and resolution factors. Separations were optimized as a function of pH in order to exploit the effect of the electrostatic interactions between the oppositely charged selector and selectand. The method has been applied to the analysis of the enantiomeric excess of chiral monomers used for the solid phase synthesis of chiral PNA oligomers. CE chiral analysis showed that a very high enantiomeric purity was generally achieved in the synthesis of all monomers, except for histidine and aspartic acid based monomers in which ca. 10% of the "wrong" enantiomer was always present.  相似文献   

10.
《Analytical letters》2012,45(7):1429-1437
Abstract

Enantiomers of alanine, methionine, tryptophan, serine, threonine, phenylalanine, tyrosine, and glutamic acid are sampled respectively in different channel of a new capillary array electrophoresis with rotary fluorescence scanner that was built by ourselves and separation conditions for these respective enantiomers are screened with different types and concentrations of additives to the separation buffer. The experimental results indicate that 2.5 mM β‐cyclodextrin additives are preferred for the respective separation of the eight kinds of amino acids.  相似文献   

11.
When recrystallizations were performed using a mixture of 12 D,L-amino acids (alanine, aspartic acid, arginine, glutamic acid, glutamine, histidine, leucine, methionine, serine, valine, phenylalanine, and tyrosine) with excess D,L-asparagine, all amino acids with the same configuration as asparagine were preferentially co-crystallized, indicating that it is the nature of a mixture of racemic amino acids to produce a spontaneous high enantiomeric excess.  相似文献   

12.
A simple and efficient method for the determination of enantiomeric purity of structurally diverse phosphonic and phosphinic acid analogues of phenylalanine and phenylglycine using capillary electrophoresis is presented. These preliminary studies indicated that the enantiomer separation is strongly dependent on the structure of the aminophosphonic acid.  相似文献   

13.
A novel single‐isomer cyclodextrin derivative, heptakis {2,6‐di‐O‐[3‐(1,3‐dicarboxyl propylamino)‐2‐hydroxypropyl]}‐β‐cyclodextrin (glutamic acid‐β‐cyclodextrin) was synthesized and used as a chiral selector in capillary electrophoresis for the enantioseparation of 12 basic drugs, including terbutaline, clorprenaline, tulobuterol, clenbuterol, procaterol, carvedilol, econazole, miconazole, homatropine methyl bromide, brompheniramine, chlorpheniramine and pheniramine. The primary factors affecting separation efficiency, which include the background electrolyte pH, the concentration of glutamic acid‐β‐cyclodextrin and phosphate buffer concentration, were investigated. Satisfactory enantioseparations were obtained using an uncoated fused‐silica capillary of 50 cm (effective length 40 cm) × 50 μm id with 120 mM phosphate buffer (pH 2.5–4.0) containing 0.5–4.5 mM glutamic acid‐β‐cyclodextrin as background electrolyte. A voltage of 20 kV was applied and the capillary temperature was kept at 20°C. The results proved that glutamic acid‐β‐cyclodextrin was an effective chiral selector for studied 12 basic drugs. Moreover, the possible chiral recognition mechanism of brompheniramine, chlorpheniramine and pheniramine on glutamic acid‐β‐cyclodextrin was investigated using the semi‐empirical Parametric Method 3.  相似文献   

14.
Indirect UV detection capillary electrophoresis (CE) was used for the separation of aminoalkanephosphonic acid (AP) enantiomers by applying commercially available cyclodextrins as chiral discriminators. The results show that the separation of the enantiomers depends on pH of the background electrolyte, the molar ratio of cyclodextrin to aminophosphonic acid, and on the type of the applied chiral selector. Optimization of process conditions allowed enantiomeric baseline separation or partial separation of 12 out of 14 alpha-aminophosphonic acids studied. This type of CE might therefore be successfully used for routine determination of enantiomeric purity of aminophosphonic acids.  相似文献   

15.

Obtaining enantiomeric pure compounds is—among other techniques—possible in a resolvation experiment via diastereomeric salt formation, excellently exemplified by a modified Pope–Peachy method performed in supercritical carbon dioxide as solvent. The salt precipitation is followed by supercritical fluid extraction (SFE) to separate the diastereomeric salts and the unreacted enantiomers. To evaluate the extraction efficiency, conversion and enantioselectivity achieved, it is essential to determine the enantiomer excess and the residual resolving agent content in extracts and raffinates. Carefully chosen experimental parameters enable the simultaneous determination of certain anions and cations in capillary electrophoresis in a single run, which has not been reported for diastereomeric mixtures so far. In this paper, a partially validated chiral selective cyclodextrin enabled capillary electrophoresis method is presented for the characterization of cis-permethrinic acid samples resolved with (R)-1-phenylethylamine prepared by the SFE-based resolvation technique. To evaluate the efficiency of the resolvation, a cyclodextrin enabled chiral separation method was developed applying permethylated-β-cyclodextrin as chiral selector. The theoretical possibility of the widespread application of the developed method (with minor adjustments) is justified for other selectands and selectors. The developed methods can be thereby applied for the fast and reliable control of resolvation experiments.

  相似文献   

16.
Obtaining enantiomeric pure compounds is—among other techniques—possible in a resolvation experiment via diastereomeric salt formation, excellently exemplified by a modified Pope–Peachy method performed in supercritical carbon dioxide as solvent. The salt precipitation is followed by supercritical fluid extraction (SFE) to separate the diastereomeric salts and the unreacted enantiomers. To evaluate the extraction efficiency, conversion and enantioselectivity achieved, it is essential to determine the enantiomer excess and the residual resolving agent content in extracts and raffinates. Carefully chosen experimental parameters enable the simultaneous determination of certain anions and cations in capillary electrophoresis in a single run, which has not been reported for diastereomeric mixtures so far. In this paper, a partially validated chiral selective cyclodextrin enabled capillary electrophoresis method is presented for the characterization of cis-permethrinic acid samples resolved with (R)-1-phenylethylamine prepared by the SFE-based resolvation technique. To evaluate the efficiency of the resolvation, a cyclodextrin enabled chiral separation method was developed applying permethylated-β-cyclodextrin as chiral selector. The theoretical possibility of the widespread application of the developed method (with minor adjustments) is justified for other selectands and selectors. The developed methods can be thereby applied for the fast and reliable control of resolvation experiments.  相似文献   

17.
The impressive selectivity offered by capillary electrophoresis can in some cases be further increased when ligands or additives that engage in weak affinity interactions with one or more of the separated analytes are added to the electrophoresis buffer. This on-line affinity capillary electrophoresis approach is feasible when the migration of complexed molecules is different from the migration of free molecules and when separation conditions are nondenaturing. In this review, we focus on applying weak interactions as tools to enhance the separation of closely related molecules, e.g., drug enantiomers and on using capillary electrophoresis to characterize such interactions quantitatively. We describe the equations for binding isotherms, illustrate how selectivity can be manipulated by varying the additive concentrations, and show how the methods may be used to estimate binding constants. On-line affinity capillary electrophoresis methods are especially valuable for enantiomeric separations and for functional characterization of the contents of biological samples that are only available in minute quantities.  相似文献   

18.
In capillary electrophoresis (CE), separation of enantiomers of a chiral compound can be achieved through the chiral interactions and/or complex formation between the chiral selector and the enantiomeric analytes on leaving their diastereomeric forms with different stability constants and hence different mobilities. A great number of chiral selectors have been employed in CE and among them macrocyclic antibiotics exhibited excellent enantioselective properties towards a wide number of racemic compounds. The use of azithromycin (AZM) as a chiral selector has not been reported previously. This work reports the use of AZM as a chiral selector for the enantiomeric separations of five chiral drugs and one amino acid (tryptophan) in CE. The enantioseparation is carried out using polar organic mixtures of acetonitrile (ACN), methanol (MeOH), acetic acid and triethylamine as run buffer. The influences of the chiral selector concentration, ACN/MeOH ratio, applied voltage and capillary temperature on enantioseparation are investigated. The results show that AZM is a viable chiral selector in CE for the enantioseparation of the type of chiral drugs investigated.  相似文献   

19.
This review surveys the enantiomeric separation of drugs by electrokinetic chromatography using polymeric chiral surfactant pseudostationary phases. These phases have recently been shown to provide better mass transfer and increased rigidity and stability than regular micelles in micellar capillary electrophoresis. Characterization of the polymeric chiral surfactants is presented. Solution interactions of the pseudostationary phases via thermodynamics and fluorescence probe studies are evaluated. Also, case studies of enantiomeric separation of drugs using a single amino acid surfactant and the synergistic effect of the addition of gamma-cyclodextrin to the buffer is discussed. The use of dipeptide surfactants for chiral drug separations is described as well.  相似文献   

20.
High performance capillary electrophoresis (HPCE) methods are described that will separate the enantiomers of various lobeline analogs synthesized in these laboratories. "Cyclodextrin array analysis" was used for preliminary screening and electrophoresis conditions were optimized for each investigated analog. The lobeline analogs under consideration were investigated as potential nicotinic agonists for the treatment of neurodegenerative disorders, such as Alzheimer's disease. Native alpha (alpha)-, beta (beta)-, and gamma (gamma)-cyclodextrins, methyl-beta-cyclodextrin (M-beta-CD), heptakis-(2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CD), and heptakis-(2,3,6-tri-O-methyl)-beta-cyclodextrin (TM-beta-CD), hydroxypropyl-alpha-cyclodextrin (HP-alpha-CD), hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and hydroxypropl-gamma-cyclodextrin (HP-gamma-CD) were used as run buffer additives and their effect on the enantiomeric resolution of the lobeline analogs was investigated. The effect of pH, buffer concentration, voltage, temperature and organic modifier concentration on the enantiomeric resolution of the lobeline analogs was investigated. The most suitable conditions for each compound were chosen and, with detection at a wavelength of 200 nm, optimized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号