共查询到20条相似文献,搜索用时 62 毫秒
1.
锂离子电池纳米电极材料研究 总被引:29,自引:1,他引:29
采用XRD,TEM方法对纳米相电极材料的结构,形貌进行表征,并用循环伏安法,恒流充放电法对电极材料的嵌锂电化学行为进行研究。结果表明,由于纳米材料的微结构特性使萁 具有优越的嵌锂特性;1)锂离子嵌入电极材料内部的深度小,过程短,具 较大的比表面,有利于采用较大的电流对该电池进行充放电;2)具有较大的嵌锂空间位置,有利于增加电极的锂嵌容量。 相似文献
2.
商用锂离子电池发展至今已有20年,为了满足不同方面的社会需求,人们迫切需要新型锂离子电池电极材料.本文首先简要介绍了锂离子电池的相关知识,随后对多种新型锂离子电池正负极材料的制备、改进方法及电化学性能做了详细介绍,最后对各种电极材料的优缺点进行了简要的总结.本文还对锂离子电池在未来的应用进行了展望,以期待锂离子电池更好... 相似文献
3.
本文总结了近年来纳米薄膜锂离子电池电极材料的研究情况,特别是本课题组在这方面的工作进展.我们从纳米颗粒和纳米结构两方面对各种纳米电极材料进行了分类和归纳,对于纳米颗粒组成的薄膜电极材料,除了对传统的锂一金属氧化物(LiMO2,LiMn2O4等)电极材料和聚阴离子型(LiFePO4等)电极材料薄膜化的研究做了介绍之外,着... 相似文献
4.
5.
应用电池挤压试验机研究了锂离子电池内部短路失效过程,并由DSC、GC/MS和XRD分析了电池内部的正极、负极和电解液之间在不同温度下的反应机理.实验表明,正极Li0.5CoO2与电解液的反应是导致电池内部短路失效的根本原因.电池因内部短路发热,一旦温度达到正极Li0.5CoO2的分解温度时,正极瞬时分解,并释放出O2.后者与电解液瞬间发生剧烈反应,同时放出大量CO2气体,冲破电池壳体,造成电池发生爆炸.其中SEI膜自身的分解反应以及负极与电解液在初期的反应都为正极与电解液反应起了积累热量的作用. 相似文献
6.
7.
8.
9.
10.
摇椅锂离子二次电池及其嵌入式电极材料 总被引:8,自引:0,他引:8
本文着重对摇椅锂离子二次电池的工作原理,电池采用的嵌入式电极材料的结构,常见的合成方法,插层反应和电化学性能的研究情况以及应用前景和存在的问题等作一综述。 相似文献
11.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries. 相似文献
12.
Well-crystallized olivine LiNiPO4 and carbon-modified LiNiPO4(LiNiPO4/C) were synthesized by a combined solvothermal and solid state reaction method using water-benzyl alcohol two-phase solvent. The structure and morphology of the prepared LiNiPO4 were systematically characterized by powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The LiNiPO4 particles are up to around 2 μm in diameter while the particle size of LiNiPO4/C is about 100—200 nm. At a current rate of 0.05 C(1.00 C=167 mA/g, corresponding to one Li+ intercalation/deintercalation), LiNiPO4 and LiNiPO4/C presented a high initial specific capacity of 157 and 220 mA·h/g, respectively. The capacity of LiNiPO4/C is 72% larger than that of LiNiPO4 at 0.1 C. The LiNiPO4/C cathode exhibits a superior electrochemical performance in comparison with LiNiPO4, revealing that carbon modifying is an effective method to improve the ionic diffusion and electronic conductivity of cathode material LiNiPO4. Furthermore, lithium ion diffusion coefficients of LiNiPO4 and LiNiPO4/C are 1.80×10-15 and 1.91×10-14 cm2/s, respectively, calculated via the data from electrochemical impedance spectra. 相似文献
13.
以偏硼酸锂和草酸亚铁为原料,采用固相反应,合成了用于动力锂离子电池新型正极材料LiFeBO3,并用乙丙共聚物(EPM)对该材料进行包覆保护处理;采用XRD、SEM和元素分析等测试技术对样品进行表征。 实验表明,LiFeBO3具有较高的放电重量比容量,而且包覆EPM后的硼酸铁锂具有更好的电化学性能,5%EPM包覆的硼酸锂首次放电容量达190 mA·h/g,0.5 C下充放电循环50次后容量衰减只有4.2%。 相似文献
14.
15.
With the rapid development of new energy industry, many universities have launched comprehensive experiments about preparation, characterization, battery assembly and performance testing of lithium-ion battery materials, and have achieved good teaching results. However, due to the limitations of equipment cost and experimental time, it is impossible to meet all experimental needs. We use virtual simulation technology to make students familiar with the basic operation skills of electrochemical experiments and the use of related instruments. Through the virtual experiment about the complete process of lithium-ion batteries including preparation of positive electrode materials, assembly of and performance testing during, we established a new teaching model of online and offline integration and improved the experiment efficiency and success rate in actual operation. At the same time, this model broaden students' vision and cultivate students' practical ability and innovative awareness. 相似文献
16.
锂离子电池用多孔硅/石墨/碳复合负极材料的研究 总被引:2,自引:0,他引:2
在两步高能球磨和酸蚀条件下制得了多孔硅/石墨复合材料,并对其进行碳包覆制成多孔硅/石墨/碳复合材料。通过TEM,SEM等测试手段研究了多孔硅材料的结构。作为锂离子电池负极材料,电化学测试结果表明多孔硅/石墨/碳复合材料相比纳米硅/石墨/碳复合材料有更好的循环稳定性。同时,改变复合体配比、热解碳前驱物、粘结剂种类和用量也会对材料的电化学性能产生较大的影响。其中使用质量分数为10%的LA132粘结剂的电极200次循环以后充电容量保持在649.9 mAh·g-1,几乎没有衰减。良好的电化学性能主要归因于主活性体-多孔硅颗粒中的纳米孔隙很好地抑制了嵌锂过程中自身的体积膨胀,而且亚微米石墨颗粒和碳的复合也减轻了电极材料的体积效应并改善了其导电性。 相似文献
17.
硅/石墨复合物用作锂离子电池负极材料 总被引:1,自引:0,他引:1
以石墨和纳米硅粉为原料, 利用机械球磨的方法制备了硅/石墨复合物, 用作锂离子电池负极材料. 采用XRD, SEM以及电化学测试等手段对材料进行了结构表征和性能测试. 通过球磨不同质量比的硅和石墨, 并对相应的复合物进行充放电测试, 寻找到了硅和石墨的最佳比例, 其值为1∶9. 实验结果表明, 所得材料既具备高于纯纳米硅的循环性能, 又具有比石墨高的可逆容量. 相似文献
18.
锂离子电池正极材料LiV3-xMnxO8的水热合成与性能 总被引:1,自引:0,他引:1
采用水热法制备了Mn掺杂改性的锂二次电池钒基层状正极材料LiV3-xMnxO8(x=0.00, 0.01, 0.02, 0.04, 0.06, 0.08, 0.10). 用X射线衍射(XRD)和扫描电镜(SEM)对材料的晶体结构和形貌进行表征, 并以50 mA·g-1的电流对材料进行恒流充放电测试. 研究了Mn掺杂对材料晶体结构和电化学性能的影响. 结果表明, Mn掺杂能够明显改善材料的电化学性能. 在掺杂改性的LiV3-xMnxO8材料中, LiV2.94Mn0.06O8的初始容量最高, 达到295 mAh·g-1. 当掺杂量控制在0.01≤x≤0.08范围内时, LiV3-xMnxO8材料均具有较好的循环性能和充放电可逆性, 经20次循环后放电比容量都保持在120 mAh·g-1以上, 40次循环后都保持在100 mAh·g-1以上, 且材料的充放电效率始终维持在93%以上. 相似文献
19.
20.
XIE Hai-ming YAN Xue-dong YU Hai-ying ZHANG Ling-yun YANG Gui-ling XU Yang WANG Rong-shun **. Department of Chemistry Northeast Normal University Changchun P. R. China . Department of Chemistry Inner Mongolia University for Nationalities Tongliao P. R. China 《高等学校化学研究》2006,22(5):639-642
IntroductionLithium ion batteries have attracted a great interestbecause of their commercial applications in portable de-vices[1,2].Great efforts have been made to improve theenergy density of new anode materials.For example,Sn-based compounds,such as SnO… 相似文献