首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of emulsion polymerization to prepare core–shell rubber (CSR) toughening particles with different shell thickness-to-core diameter ratios is described. The conditions leading to controlled particle size and morphology are discussed. The particle shell is crosslinked during the synthesis so that its integrity and morphology are maintained upon curing of the epoxy network. The mixing of the CSR particles with the reactive epoxy and the processing of toughened-epoxy networks are described. The characteristics of each phase and the mechanical properties of the materials are reported. The fracture parameters (Klc, Glc) are discussed in relation to the structure of the CSR-particles.  相似文献   

2.
Chemically reactive particles with controllable sizes from 383 to 756 nm in very narrow size distributions (well below 5%) have been synthesized by the modified surfactant-free emulsion homopolymerization of inhibitor-free glycidyl methacrylate with the dropwise addition of ionic initiators during the initial reaction of 10 min. The effects of monomer concentration and the amount of initiator were systematically studied on the particle diameter. In addition, changes of the particle diameter and its size distribution during the whole synthesis process were also investigated. The mechanism for the formation of coalesced and highly monodisperse chemically reactive colloidal particles was discussed based on the colloidal stability governed by chemical reaction and physical interactions between the precursor or primary particles. Colloidal photonic crystals with different brilliant visible colors in a large scale were prepared by shearing assembly of such chemically reactive monodisperse particles with spin coating technique. The reflection wavelengths in the visible spectrum range are from the high-order including the second-order light diffraction of the as-prepared PGMA photonic crystals. Such monodisperse chemically reactive particles will be very useful in optical and sensing technologies, and in biochemical analysis.  相似文献   

3.
This paper is a summary of the current knowledge of laser-generated aerosols under atmospheric conditions. It is restricted to typical laser sampling conditions as they are used in LA-ICP spectrometry. Published experimental evidence and proposed models are reviewed and critical summarized. The collected works show that a certain agreement exists that independently of the sample two size fractions with different chemical composition are found. The mechanism generating the different particle fractions are currently not clear. Possible sources of particle generation are described and critically reviewed. Fundamentally three distinguishable modes (gas, liquid, solid) can be described that can appear: gas-to-particle conversion, hydrodynamic sputtering, mechanical spallation/exfoliation. More recently explosive boiling as a mechanism of liquid expulsion has been discussed as a further possible source under certain conditions. Particle conditioning during transport is discussed as a source for agglomeration. The correlation between size distribution and laser parameters is discussed.  相似文献   

4.
聚丙烯共混物一步法反应共混增容的研究   总被引:3,自引:0,他引:3  
研究了影响聚丙烯/(丙烯腈 苯乙烯)共聚物(PP/AS)合金反应挤出生成的各项因素,发现在过氧化二异丙苯(DCP)存在的条件下进行反应共混可以发生接枝反应,生成PP与AS的相互接枝物.接枝物的生成显著地细化了分散相粒子,改善了合金相形态.为抑制反应共混过程中聚丙烯的降解,同时促进接枝反应,在PP/AS/DCP反应共混中加入了含适量双键组分的添加剂亚油酸三甘酯(GTL).结果发现,较少量GTL的加入就显著抑制了聚丙烯的降解,且进一步改善了合金的相形态.在合适的GTL与DCP用量下,反应共混不但显著改善了PP/AS合金的相形态,而且提高了合金的力学性能,初步确立了聚丙烯共混物一步反应共混挤出增溶的方法.  相似文献   

5.
Abstract— Mutants of Saccharomyces cerevisiae accumulating uroporphyrin (UP) or protoporphyrin (PP) were used as a model for the in vivo phototoxic effect of porphyrins observed in the human skin photosensitivity associated with porphyrias (porphyria cutanea tarda and erythropoietic protoporphyria). We have found that UP is localized in vacuoles and PP is present in all compartments except vacuoles in yeast cells. Endogenous PP is much more effective as a photosensitizer of yeast cells than UP. Protoporphyrin action is strictly dependent on the presence of oxygen. In contrast, UP displays a phototoxic effect even if oxygen is not present in the suspension, implicating a free radical mechanism that operates in anaero-biosis upon photosensitization by UP. Catalase or superoxide dismutase deficiency affects photosensitization by UP. A possible mechanism of UP photosensitizing activity is discussed.  相似文献   

6.
龙岩煤不同宏观煤岩组分的热破碎性质研究   总被引:10,自引:2,他引:8  
用筛分和浮选法对龙岩煤进行分选, 得到不同粒径、不同宏观煤岩的龙岩煤颗粒。在热天平上进行热解破碎研究,并在自制的小型流化床上进行燃烧破碎试验。结果表明,亮煤与灰煤均发生一次破碎, 破碎后生成许多细小颗粒, 其中粒径0.8mm以下的细颗粒占多数;暗煤则不发生一次破碎。随着升温速率和颗粒粒径的增大, 一次破碎变得较为剧烈;颗粒性质、颗粒粒径、炉床温度和燃烧时间等因素对龙岩煤在流化床燃烧中的破碎均有重要影响。亮煤与灰煤因结构致密, 颗粒中大孔隙少, 显微硬度大, 灰分少等原因使得它们在燃烧中发生严重破碎;而暗煤颗粒则因相反的原因不发生破碎或仅发生轻微破碎。粒径越大, 炉床温度越高, 燃烧时间越长, 破碎越剧烈;亮煤与灰煤在燃烧中均发生了二次破碎, 其中亮煤的二次破碎更剧烈;燃烧后期, 亮煤的颗粒破碎比灰煤更快;由于破碎, 入炉煤颗粒平均粒径在燃烧早期迅速减小, 而后随着燃烧的进行而逐步趋于一个稳定值;亮煤在流化床燃烧中服从等密度燃烧模式, 暗煤服从等直径燃烧模式, 而灰煤则服从混合燃烧模式。  相似文献   

7.
The novel flame retarded unsaturated polyester resins have been developed and prepared by introduction of high nitrogen content additives into the polymer matrix in order to verify their effectiveness in the formation of swollen carbonaceous char inhibiting the burning process of the polymer. The intumescent flame retardants (IFRs) based on mixture or metal complex were developed and characterized by particle size distribution, Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), powder X-ray diffraction (XRD), elemental analysis (CHN) and thermogravimetric analysis (TGA). The evaluation of the efficiency of IFRs addition on the flammability and smoke emission of the unsaturated polyester resins (UP) was carried out using the fire hazard (UL-94), limiting oxygen index (LOI) and cone calorimeter (CC) tests, as well as smoke density chamber tests. The volatile compounds evolved during the burning of materials were determined using a steady state tube furnace and a gas chromatograph with mass spectrometer. Furthermore, the prepared materials were subjected to differential scanning calorimetry (DSC), thermogravimetric analysis and water resistance tests. The mechanical properties of the materials were investigated using Shore D hardness and dynamic mechanical thermal analysis (DMA). The structural evaluation of the manufactured materials and samples after the cone calorimetry tests was carried out using scanning electron microscopy (SEM). It was found that the incorporation of new intumescent flame retardants led to the formation of carbonaceous char layers’ inhibiting the decomposition process and limiting the smoke emission. The most promising results were obtained for the resin containing complex designated as ZN3AT, for which the highest reduction in maximum values of heat release rate (419 kW/m2) compared to unmodified polymer (792 kW/m2) were recorded. Apart from that, the prepared intumescent flame retardants affect the cross-linking process as well as the thermal and mechanical properties of the UP.  相似文献   

8.
A gram-scale miniature reactor designed for reactive blendind was introduced. A brief review was given on the light scattering method for morphology characterization and the ellipsometric analysis on polymer-polymer interface. These methods were applied for the reactive blending of poly(ethylene terephthalate) with ethylene-propylene rubber (70/30 PET/EPR). Compared with non-reactive system, the reactive one yielded finer dispersion of rubber particles. It showed better stability of particle dispersion during static annealing. The reactive system with thick interface showed higher impact strength than the non-reactive one having same particle size but thinner interface, suggesting that the thick interface may be a prerequisite to the rubber toughening.  相似文献   

9.
Zinc oxide powders with different morphologies and grain sizes were synthesized using solvothermal methods from ethanolic zinc acetate solutions in the presence of lithium hydroxide. The influence of the temperature and the time of the reaction, as well as the pH value of the starting solution, on the ZnO particle size and morphology were examined. It was found that an increase in the pH value from 8 to 12 results in a significant decrease in the mean particle size. Also, the particles?? morphology can be changed from hexagonal plates and prisms to rods by controlling the reaction time and the temperature. The crystallization mechanism is discussed, based on established correlations such as the particle size/shape versus the reaction parameters. Dissolution/recrystallisation is the most probable growth mechanism responsible for the ZnO particles?? morphology obtained in the solvothermal (hydrothermal) reactions with a basic solution. The planar structure of the zinc-hydroxy-acetate molecule plays the main role in growing the structures during the sovothermal reactions with a slightly acid solution.  相似文献   

10.
煤直接液化残渣快速热解半焦特性的研究   总被引:1,自引:1,他引:0  
在惰性气氛N2条件下,利用小型固定床进行了煤直接液化残渣快速热解半焦特性的研究,并结合热天平残渣半焦等温热失重进行分析。考察了终态温度、停留时间等外部操作条件以及颗粒大小对液化残渣快速热解半焦特性的影响。结果表明,半焦产率随着终态温度提高而降低,焦质变脆,石墨化程度增强,气化反应性减弱;随着反应停留时间的延长,热解产物半焦收率降低,但焦样中孔的数目增多;颗粒大小也影响着半焦的产率,在较大颗粒大小分布范围内,随着颗粒大小的减小,半焦产率随之减少。  相似文献   

11.
A kind of emulsifier-free latex (FL) was successfully synthesized from styrene (St) and butyl acrylate (BA) with 2-acrylamido-2-methyl propane sulfonic acid (AMPS) as a reactive emulsifier. The particle size of latex particles, stability against electrolytes, minimum film forming temperature (MFT) and water contact angle (CA) were evaluated and compared with a conventional latex (CL). Test results show that FL has larger particle size, better stability against electrolytes and lower MFT value compared with CL; higher AMPS content leads to smaller particle size and smaller water CA.  相似文献   

12.
Using an elastic vibration model for phonons of an oxidized small metallic particle, size dependence of the superconducting transition temperature TC is derived. It is shown that the oxidization results in the reduction of TC with decrease in particle size. The main cause is that the surface oxide enhances the phonon frequencies as the particle size decreases. Superconducting character of amorphous thin films and its relation to an oxidized small particle is also discussed.  相似文献   

13.
It is shown that in the case of thermal decomposition of sodium azide the overall kinetics can be predicted by defined particle size of the decomposed sodium azide crystals. This is always the case if the rate constant is a function of the particle size. Hence this special example can be generalized for similar decomposition reactions. It is necessary that the particles decompose independently which could be proved experimentally with sodium azide. If for this reason we state for true that the pressure/time-function of each particle size add together it is possible to set up a formula for the pressure/time-function of any particle size distribution. With the pressure/time function holding for sodium azide of uniform particle size, the total function for a Gauß distribution can be calculated exactly. Moreover, the trivial case of one single particle size and the case of two different particle sizes are discussed. Furthermore an approximation method for any arbitrary pressure/time-functions and distribution by means of “Schwerpunktdeutung” are discussed which can be carried out graphically as well as numerically. The numerical approximation is illustrated by an example. Pressure/time-functions then loose their characteristic form because of their dependence on the particle size distributions under consideration. In this case, reaction mechanism cannot be derived from pressure/time functions.  相似文献   

14.
Ultrafine polymer nanoparticles based on poly(ethylene oxide) (PEO) macromonomer-grafted polystyrene (PS) have been synthesised by emulsifier-free emulsion polymerisation. In addition to the binary copolymerisation between PEO macromonomer and styrene, ternary copolymerisations were also conducted in the presence of a cationic monomer (2-(methacryloyloxy)ethyl) trimethylammonium chloride (MATMAC) as a second comonomer. The size and charge characteristics of fine nanoparticles were characterised using both photon correlation spectroscopy and transmission electron microscopy techniques as well as colloidal titration. It was found that after PEO chains (repeat unit 9 or higher) were incorporated into the PS latex, the particle size was significantly reduced owing to the steric effect contributed from grafted PEO chains. Ternary copolymerisation using MATMAC as comonomer further reduced the particle size, leading to nanoparticles as small as 60 nm. Increasing the MATMAC feed ratio gradually reduced the final size of the nanoparticle, owing to the enhancement in electrostatic stabilisation, whereas increasing the PEO macromonomer feed ratios led to slightly larger particles but significantly inhibited the agglomeration of primary particles. The formation mechanism of the nano- or microparticles with various sizes during polymerisation is discussed in terms of nucleation, agglomeration and adsorption of primary particles.  相似文献   

15.
Poly(alkyl methacrylate)/poly(thiophene) (PAMA/PTh) core/shell nanoparticles were synthesized using a one-pot dual initiation system. A ferric chloride/hydrogen peroxide mixture and sodium vinyl sulfonate were used as an initiator couple and a reactive surfactant, respectively. In the dual initiation, process variables such as the concentration of reactive surfactant, monomer ratio, and monomer type were adjusted to control the particle size of PAMA/PTh core/shell nanoparticles from 192 to 1,172 nm. The inner structure of the core/shell nanoparticles was confirmed in their morphological transition from spherical particles to a crumpled sheath using a solvent extraction method and field-emission scanning electron microscopy. From the spectroscopic data, it was found that the UV-adsorption and fluorescent emission intensity of PAMA/PTh latexes increased with a decrease in the average particle size. The quantum efficiency of all the samples was approximately 12 % and was unaffected by the particle size.  相似文献   

16.
The particle size effect observed on the performance of Pt/C electrocatalysts toward the methanol oxidation reaction (MOR) has been investigated with differential electrochemical mass spectrometry (DEMS). The investigation has been conducted under both potentiodynamic and potentiostatic conditions as research on methanol electrochemical oxidation is closely related to interest in direct methanol fuel cells. The particle size effect observed on the MOR is commonly regarded as a reflection of different Pt-CO and Pt-OH bond strengths for different particle sizes. This work focuses mainly on the mechanism of methanol dehydrogenation on platinum which is central to the problem of the optimization of the efficiency of methanol electro-oxidation by favoring the CO(2) formation pathway. It was found that the partitioning of the methanol precursor among the end products on supported platinum nanoparticles is strongly dependent on particle size distribution. Also, it is postulated that the coupling among particles of different sizes via soluble products must be considered in order to understand the particle size effects on the observed trends of product formation. An optimum particle size range for efficiently electro-oxidizing methanol to CO(2) was found between 3 and 10 nm, and loss in efficiency is mostly related to the partial oxidation of methanol to formaldehyde on either too small or too large particles. The possible reasons for these observations are also discussed.  相似文献   

17.
Main experimental approaches for obtaining polymer, inorganic and hybrid colloidal particles as well as the tailored functionalization of their surface by oligoperoxide surfactants (OPS) and metal complexes (OMC) on their basis are discussed in the paper. The methods proposed enable to combine the stage of the formation of colloidal polymer, siliceous, metal and metal-oxide particles with the stage of their surface modification by functional surface-active oligoperoxides, which are sorbed irreversibly. Novel functional particles are studied by chemical, colloidal-chemical, rheological methods and scanning electronic microscopy. The occurrence of metal and metal oxide particle formation in distinct zones correlates well with the particle size distribution. The availability of reactive ditertiary peroxidic fragments on the particle surface as a result of OPS or OMC sorption causes their reliable protection, hydrophobity and ability to form free radicals and participate in elementary stages of radical processes.  相似文献   

18.
Abstract

The stability of acrylic latices stabilized by poly(ethylene oxide) (PEO) is governed by the bridging flocculation process during polymerization. The final latex particle size increases with increasing concentration of initiator, PEO, or NaCl. The total scrap formed during the reaction increases rapidly with increasing NaCl concentration due to the ionic strength effect. It is shown that the final latex particle size decreases rapidly with an increase in the agitation speed. The amount of total scrap formed during polymerization is generally greater at a higher agitation speed. These results suggest that the fraction of the particle surface covered by PEO and the ratio of the thickness of the PEO adsorption layer to that of the electric double layer of the latex particles should play an important role in determining the final latex particle size and colloidal stability.  相似文献   

19.
Porous silica and hybrid silica chromatographic support particles having particle diameters ranging approximately from 1 microm to 15 microm have been characterized by flow/hyperlayer field-flow fractionation (FFF). The particle size accuracy has been improved significantly in this work by a second-order polynomial calibration. Very good agreement between the FFF data and scanning electron microscopic (SEM) results has been achieved. The effects of particle porosity, pore sizes, and particle sizes on the particle size accuracy in electrical sensing zone (ESZ) analyses have been discussed. It has been demonstrated by computer simulation and experimental measurements that false peaks can be generated in certain particle size regions when the static light scattering (SLS) technique is applied to tightly distributed spherical chromatographic support particles.  相似文献   

20.
The results of a mathematical model developed in the authors' previous work are discussed and compared against final number (N) and size distribution of particles (PSD) and the rate of polymerization (RP) experimental data of methyl methacrylate (MMA) emulsion polymerization above the critical micelle concentration (cmc) of the surfactant. On the basis of the model results, the hypothesis that the observed bimodal PSD can be ascribed to secondary nucleation as proposed in the literature is questionable. It is discussed that this PSD can also be caused by differences in the growing rate of different‐size particles as predicted for styrene emulsion polymerization. Because of the small particle size obtained at low initial monomer concentration, the high rate of free‐radical desorption reduces the accumulation of these species; therefore, the autoacceleration effect is less pronounced for the conditions under study compared with the usual behavior of the RP during MMA emulsion polymerization above cmc. Similarities and differences between model predictions and experimental data are discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2547–2556, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号