首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
The ability of Candida cylindracea lipase produced using palm oil mill effluent (POME) as a basal medium to catalyze the esterification reaction for butyl butyrate formation was investigated. Butyric acid and n-butanol were used as substrates at different molar ratios. Different conversion yields were observed according to the affinity of the produced lipase toward the substrates. The n-butanol to butyric acid molar ratio of 8 and lipase concentration of 75 U/mg gave the highest butyl butyrate formation of 63.33% based on the statistical optimization using face centered central composite design (FCCCD) after 12 h reaction. The esterification potential of the POME based lipase when compared with the commercial lipase from the same strain using the optimum levels was found to show a similar pattern. It can be concluded therefore that the produced lipase possesses appropriate characteristics to be used as a biocatalyst in the esterification reactions for butyl butyrate formation.  相似文献   

2.
Samples of lignocellulosic material, stem of date palm (Phoenix dactylifera), were carbonized at different temperatures (400–600 °C) to investigate the effects of their impregnation with aqueous solution of either phosphoric acid (85 wt%) or potassium hydroxide (3 wt%). The products were characterized using BET nitrogen adsorption, helium pycnometry, Scanning Electron Microscopy (SEM) and oil adsorption from oil–water emulsion (oil viscosity, 60 mPa s at 25 °C). True densities of the products generally increased with increase in carbonization temperature. Impregnated samples (acid/base) showed wider differences in densities at 400 (1.978/1.375 g/cm3) than at 600 °C (1.955/2.010 g/cm3). Without impregnation, the sample carbonized at 600 °C showed higher density of 2.190 g/cm3. This sample has impervious surface with BET surface area of 124 m2/g. Acid-impregnated sample carbonized at 500 °C has the highest surface area of 1100 m2/g and most regular pores as evidenced by SEM micrographs. The amounts of oil adsorbed decreased with increase in carbonization temperature. Without impregnation, sample carbonized at 400 °C exhibited equilibrium adsorption of 4 g/g which decreases to about a half for sample carbonized at 600 °C. Impregnation led to different adsorptive capacities. There are respective increase (48 wt%) and decrease (5 wt%) by the acid- or base-impregnated samples carbonized at 600 °C. This suggests higher occurrence of oil adsorption-enhancing surface functional groups such as carbonyl, carboxyl and phenolic in the former sample.  相似文献   

3.
The enzymatic alcoholysis of crude palm oil with methanol and ethanol was investigated using commercial immobilized lipases (Lipozyme RM IM, Lipozyme TL IM). The effect of alcohol (methanol or ethanol), molar ratio of alcohol to crude palm oil, and temperature on biodiesel production was determined. The best ethyl ester yield was about 25 wt.% and was obtained with ethanol/oil molar ratio of 3.0, temperature of 50 °C, enzyme concentration of 3.0 wt.%, and stepwise addition of the alcohol after 4 h of reaction. Experiments with 1 and 3 wt.% of KOH and 3 wt.% of MgO were carried out to compare their catalytic behavior with the enzymatic transesterification results. The commercial immobilized lipase, Lipozyme TL IM, showed the best catalytic performance.  相似文献   

4.
Total vapour pressures and excess molar volumes, measured at the temperature 313.15 K, are reported for three binary mixtures (2-pyrrolidone + water), (2-pyrrolidone + methanol) and (2-pyrrolidone + ethanol). The results are compared with previously obtained data for binary mixtures (amide + A), where amide=N-methylformamide, N,N-dimethylformamide and N-methylacetamide, and A= water, methanol, and ethanol.  相似文献   

5.
Excess molar enthalpies and excess molar volumes at T =  298.15 K andp =  0.1 MPa are reported for (methanol, or ethanol, or 1-propanol  +  1,4-dicyanobutane, or butanenitrile, or benzonitrile). For all the mixtures investigated in this work the excess molar enthalpy is large and positive. The excess molar enthalpy decreases as the carbon chain number of the alkanol species increases from methanol to propanol. The excess molar volumes are both positive and negative. The Extended Real Associated Solution and the Flory–Benson–Treszczanowicz models were used to represent the data. Both these models describe better the excess molar enthalpy than the excess molar volumes of (an alkanol  +  a nitrile compound).  相似文献   

6.
《Tetrahedron: Asymmetry》2005,16(3):717-725
(R)- and (S)-2-bromo-1-(4-nitrophenyl)ethanol are precursors of important β-adrenergic receptor blocking drugs (R)-nifenalol and (S)-sotalol, respectively. Both were obtained in enantiomeric pure forms via a single highly efficient enzymatic transesterification reaction of (±)-2-bromo-1-(4-nitrophenyl)ethanol using immobilized lipase PS-C-II (E >1000; concn 200 g/L), while PS lipase completely failed to react. On the other hand, the hydrolytic method also produced enantiorich precursors though relatively less efficient (PS-C-II, E = 5.1). Out of all the approaches employed the transesterification method proved to be the most efficient.  相似文献   

7.
In general, lignocellulosic biomass contains three major components, namely lignin, hemicellulose and cellulose which are the polymers of C5 and C6 sugars. Thus, there is potential to utilize of this biomass for bioethanol production. The hydrolysis of cellulose into glucose was difficult due to the more fibrous nature and thus inhibit enzyme penetration into the cellulose. In order to solve this problem, hydrothermal pretreatment can be used for breaking the bonds within the lignin structure and increase the accessibility of enzyme into the cellulose. In this study, the effect of chemical addition, sodium hydroxide (NaOH) and calcium oxide (CaO) in hydrothermal pretreatment at 180 °C and 30 minutes reaction time of palm oil empty fruit bunches (EFB) on the enzymatic hydrolysis efficiencies was investigated. The enzymatic hydrolysis of hydrothermally pretreated EFB give the highest concentration of glucose at 0.67 g/L while the hydrothermally pretreated of EFB in the presence of NaOH gives the lowest glucose concentration 0.45 g/L.  相似文献   

8.
Two sets of adsorbents were prepared from locally available raw materials, characterized and tested. The first set consists of crushed natural attapulgite and crushed attapulgite mixed with petroleum tank-bottom sludge and carbonized at 650 °C. Another set was prepared using trunk of date palm tree (Phoenix dactylifera) activated at 700 and 800 °C. Both sets were characterized using BET surface area and pore distributions, FTIR, XRD, SEM and TEM. Natural attapulgite and attapulgite/sludge composite exhibited different characteristics and adsorptive capacities for oil removal from oily water. Adsorptive capacities were calculated from the breakthrough curves of a column test. An oily water solution of about 500 mg-oil/L was passed through both the attapulgite and attapulgite/sludge columns until the column effluent concentration exceeded a reference limit of 10 mg-oil/L. Uptake was calculated at this limit at 155 and 405 mg-oil/g-adsorbent, respectively. This was lower than the performance of a commercial activated carbon sample (uptake calculated at 730 mg-oil/g-adsorbent). Relatively, the date palm, carbonaceous-based adsorbent samples showed less significant differences in both bulk and surface properties. Uptake significantly improved to 1330–1425 mg-oil/g-adsorbent. Attempt was made to associate this performance with the difference in the surface areas between the two sets. However, other factors are found to be important as the second set has a range of surface area less than that of the commercial sample. As evidenced by FTIR, XRD and TEM, the activated carbonaceous materials developed porous structures which form defective graphitic sheet ensembles that serve as additional adsorption sites in the sample.  相似文献   

9.
The excess molar volumes and the partial molar volumes for (propionitrile + an alkanol) at T = 298.15 K and at atmospheric pressure are reported. The hydrogen bonding between the OH⋯NC groups are discussed in terms of the chain length of the alkanol. The alkanols studied are (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 1-pentanol).The excess molar volume data was fitted to the Redlich–Kister equation The partial molar volumes were calculated from the Redlich–Kister coefficients.  相似文献   

10.
《Comptes Rendus Chimie》2015,18(12):1328-1334
In this study, a method consisting in coupling transesterifications for no-glycerol biodiesel production catalyzed by CaO was put forward. The transesterification between rapeseed oil and methanol was greatly improved by integrating glycerol and dimethyl carbonate (DMC) transesterification. From this result, it was found that the high fatty acid methyl ester (FAME) yield of 92.6% (with ultra-traces of glycerol as a by-product) was obtained at 65 °C under normal pressure, which is as high as the previously reported supercritical DMC method for no-glycerol biodiesel production at a reaction temperature of 350 °C and under pressures up to 17.8 MPa. Moreover, this new method has high water tolerance, and a yield of over 82% of FAME is still achieved in the presence of 0.2% of water. The optimized reaction conditions, such as the molar ratio of DMC to methanol, the catalyst dosage and the reaction time, were investigated to produce high-quality biodiesel. The fuel properties determined and discussed in light of EN 14214 (European standards) demonstrate that the biodiesel produced using this new method has good flow properties with a cloud filter plugging point of –10 °C and a pour point of –9.4 °C. Furthermore, the amount of free glycerol was found to be as low as 0.018% in the biodiesel obtained directly from this new method without any further processing. The results of this study indicate the feasibility of producing quality biodiesel fuels without glycerol by coupling transesterifications.  相似文献   

11.
The (p, ρ, T) properties and apparent molar volumes V? of ZnBr2 in ethanol at temperatures (293.15 to 393.15) K and pressures up to p = 40 MPa are reported. The measurements were made with a recently developed vibration-tube densimeter. The system was calibrated using double-distilled water, methanol, ethanol, and aqueous NaCl solutions. The experiments were carried out at molalities of m = (0.05681, 0.16958, 0.30426, 0.43835, 0.93055, 1.49016, and 1.88723) mol · kg?1 using zinc bromide. An empirical correlation for the density of (ZnBr2 + C2H5OH) with pressure, temperature, and molality has been derived. This equation of state was used to calculate other volumetric properties such as isothermal compressibility, isobaric thermal expansibility, the differences in specific heat capacities at constant pressures and volumes, apparent molar volumes of ZnBr2 in ethanol, and partial molar volumes of both components.  相似文献   

12.
The density and surface tension of the pure ionic liquid 1-butyl-3-methyl-imidazolium l-lactate were measured from T (293.15 to 343.15) K. The coefficient of thermal expansion, molecular volume, standard entropy, lattice energy, surface entropy, surface enthalpy, and enthalpy of vaporization were calculated from the experimental values. Density and surface tension were also determined for binary mixtures of {1-butyl-3-methyl-imidazolium l-lactate + water/alcohol (methanol, ethanol, and 1-butanol)} systems over the whole composition range from T (298.15 to 318.15) K at atmospheric pressure. The partial molar volume, excess partial molar volume and apparent molar volume of the component IL and alcohol/water in the binary mixtures were discussed as well as limiting properties at infinite dilution and the thermal expansion coefficients of the four binary mixtures. The surface properties of the four binary mixtures were also discussed.  相似文献   

13.
The solubility of biological chemicals in solvents provide important fundamental data and is generally considered as an essential factor in the design of crystallization processes. The equilibrium solubility data of inosine-5′-monophosphate disodium (5′-IMPNa2) in water, methanol, ethanol, acetone, as well as in the solvent mixtures (methanol + water, ethanol + water, acetone + water), were measured by an isothermal method at temperatures ranging from (293.15 to 313.15) K. The measured data in pure and mixed solvents were then modelled using the modified Apelblat equation, van’t Hoff equation, λh equation, ideal model and the Wilson model. The modified Apelblat equation showed the best modelling results, and it was therefore used to predict the mixing Gibbs free energies, enthalpies, and entropies of 5′-IMPNa2in pure and binary solvents. The positive values of the calculated partial molar Gibbs free energies indicated the variations in the solubility trends of 5′-IMPNa2. Water and ethanol (in the binary mixture with water) were found to be the most effective solvent and anti-solvent, respectively.  相似文献   

14.
We investigated the efficiency of pervaporation separation of methanol/methyl-t-butyl ether (MTBE) mixture through chitosan composite membrane modified with sulfuric acid and four surfactants. Effects of feed concentration, temperature, crosslinking degree and type of surfactants were studied. The chitosan composite membrane modified with sulfuric acid showed the pervaporation performance of over 70 wt% methanol in the permeate and flux of 100 g/m2 h measured at 25°C. At 50°C, the separation factor decreased while the flux increased exceeding 300 g/m2 h. For the membrane complexed with surfactants, the permeate showed 98.3 wt% methanol concentration and 470 g/m2 h of permeate flux at 25°C. With increasing operating temperature, the permeate flux remarkably increased to 1170 g/m2 h and the permeate showed 97.8 wt% methanol concentrations.  相似文献   

15.
This work reports new liquid–liquid solubility values (binodal curves) as well as (liquid + liquid) equilibrium data for, ternary and quaternary systems containing fatty acid methyl esters (FAME) and fatty acid ethyl esters (FAEE) from castor oil, water, glycerol, methanol and anhydrous ethanol at T = (303.15, 318.15, and 333.15) K. Solubility curves (binodal) were also obtained by the cloud-point method for binary systems containing FAME, FAEE, water, or glycerol. All results obtained can be considered of good quality. The experimental values were correlated using the UNIQUAC model, whose results presented good performance and satisfactory fitting of equilibrium values.  相似文献   

16.
The enzymatic alcoholysis of soybean oil with methanol and ethanol was investigated using a commercial, immobilized lipase (Lipozyme RMIM). The effect of alcohol (methanol or ethanol), enzyme concentration, molar ratio of alcohol to soybean oil, solvent, and temperature on biodiesel production was determined. The best conditions were obtained in a solvent-free system with ethanol/oil molar ratio of 3.0, temperature of 50 degrees C, and enzyme concentration of 7.0% (w/w). Three-step batch ethanolysis was most effective for the production of biodiesel. Ethyl esters yield was about 60% after 4 h of reaction.  相似文献   

17.
Isolation of lauric acid from crude coconut oil (CCO) has been done. Neutralization of CCO using 30% Na2CO3 solution could decrease its acid value from 1.69 to 0.48. Transesterification reactions of neutral coconut oil with methanol and K2CO3 at 55 °C in 3 hours produced methyl laurate in 52% purity. Methyl laurate with 87% purity could be isolated by fractionatal distillation at 130-140 °C. Hydrolysis of methyl laurate with NaOH produced solid lauric acidin 84% yield. Lauric acid at 5% concentration could inhibit the growth of all bacteria tested but it is still lower than Ciprofloxacin.  相似文献   

18.
The solubility of gallic acid in (water + ethanol) binary solvents was determined from (293.15 to 318.15) K at atmospheric pressure using a thermostatted reactor and UV/vis spectrophotometer analysis. The effects of binary solvents composition and temperature on the solubility were discussed. It was found that gallic acid solubility in (water + ethanol) mixed solvents presents a maximum-solubility effect. Two empirical equations were proposed to correlate the solubility data. The calculated solubilities show good agreement with the experimental data within the studied temperature range. Using the experimentally measured solubilities, the thermodynamic properties of dissolution of the gallic acid such as Gibbs energy (ΔsolG°), molar enthalpy of dissolution (ΔsolH°), and molar entropy of dissolution (ΔsolS°) were calculated.  相似文献   

19.
《Tetrahedron: Asymmetry》2005,16(4):869-874
The efficient enzymatic synthesis of enantiopure 2,3-epoxypropanol (glycidol) has been achieved. The racemic glycidyl butyrate was successfully resolved by enzymatic hydrolysis using a strategy that combines different immobilization protocols and different experimental reaction conditions. A new enzyme (25 kDa lipase)—which is a lipase-like enzyme purified from the pancreatic porcine lipase (PPL) extract—immobilized on DEAE–Sepharose was selected as the optimal biocatalyst. The optimal results were obtained at pH 7, 25 °C and 10% dioxane using this biocatalyst and a very high enantioselectivity for the enzyme was displayed, obtaining both (R)-(−)-glycidyl butyrate and (R)-(+)-glycidol with enantiomeric excesses >99% (E >100). The hydrolysis of (R)-(−)-glycidyl butyrate produced pure (S)-(−)-glycidol.  相似文献   

20.
In this work, density and speed of sound data of binary mixtures of an ionic liquid consisting of {2-hydroxy ethylammonium acetate (2-HEAA) + (water, methanol, or ethanol)} have been measured throughout the entire concentration range, from the temperature of (288.15 to 323.15) K at atmospheric pressure. The excess molar volumes, variations of the isentropic compressibility, the apparent molar volume, isentropic apparent molar compressibility, and thermal expansion coefficient were calculated from the experimental data. The excess molar volumes were negative throughout the whole composition range. Compressibility data in combination with low angle X-ray scattering and NMR measurements proved that the presence of micelles formed due to ion pair interaction above a critical concentration of the ionic liquid in the mixtures. The Peng–Robinson equation of state coupled with the Wong–Sandler mixing rule and COSMO–SAC model was used to predict densities and the calculated deviations were lower than 3%, for binary mixtures in all composition range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号