首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis, photophysical and photochemical properties of the tetra- and octa-poly(oxyethylene)substituted zinc (II) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for photodegradation, singlet oxygen, triplet state and fluorescence quantum yields, and triplet and fluorescence lifetimes of these compounds in dimethylsulfoxide (DMSO). Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications. The effects of the substituents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (3a, 5a and 6a) are also reported. The singlet oxygen quantum yields (Phi(Delta)), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.60 to 0.72. Thus, these complexes show potential as Type II photosensitizers. The fluorescence of the complexes was quenched by benzoquinone (BQ).  相似文献   

2.
The synthesis, photophysical and photochemical properties of the 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}oxy) and 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}thio) zinc(ii) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, (1)H and (13)C NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for photodegradation, singlet oxygen, fluorescence and triplet excited state quantum yields, and triplet state and fluorescence lifetimes of these compounds in dimethylsulfoxide (DMSO). The fluorescence of the complexes was quenched by benzoquinone (BQ). The effects of the substitution on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (6, 7 and 8) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications. The substituted Zn(II) phthalocyanines showed high triplet and singlet oxygen quantum yields. High singlet oxygen quantum yields are very important for Type II mechanism. Thus, these complexes show potential as Type II photosensitizers.  相似文献   

3.
The syntheses of new three phthalonitriles (1, 2 and 3), together with photophysical and photochemical properties of the resulting peripherally and non-peripherally tetrakis- and octakis 3,4-(methylendioxy)-phenoxy-substituted zinc phthalocyanines (4, 5 and 6) are described for the first time. Complexes 4, 5 and 6 have been synthesized and characterized by elemental analysis, IR, 1H NMR spectroscopy, electronic spectroscopy and mass spectra. Complexes 4, 5 and 6 have good solubility in organic solvents such as CHCl3, DCM, DMSO, DMF, THF and toluene and are mainly not aggregated (except for complex 6 in DMSO) within a wide concentration range. General trends are described for singlet oxygen, photodegradation, fluorescence quantum yields, triplet quantum yields and triplet life times of these complexes in DMSO and toluene. Complex 4 has higher singlet oxygen quantum yields, fluorescence quantum yields, triplet quantum yields and triplet life times than complexes 5 and 6. The effect of the solvents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (4, 5 and 6) are also reported.  相似文献   

4.
The non-peripherally (np-QZnPc) and peripherally (p-QZnPc) tetrakis-[7-oxo-(3-[(2-diethylaminomethyliodide)ethyl)]-4-methylcoumarin]-phthalocyaninatozinc complexes have been prepared by quaternization of non-peripherally and peripherally tetrakis[7-oxo-(3-[(2-diethylamino)ethyl)]-methylcoumarin] phthalocyaninato zinc complexes with methyliodide in dimethylsulfoxide (DMSO). The new quaternized zinc phthalocyanine complex (np-QZnPc) has been characterized by elemental analysis, MALDI-TOF, IR and UV-vis spectral data. The photophysical and photochemical properties of the peripherally and non-peripherally quaternized tetrakis-3-[(2-diethylamino)ethyl]-7-oxo-4-methylcoumarin substituted zinc phthalocyanines are reported. The effects of the position of the substituents and the aggregation of the phthalocyanine molecules on the photophysical and photochemical properties are also investigated. General trends are described for photodegradation, singlet oxygen and fluorescence quantum yields, and fluorescence lifetimes for complexes np-ZnPc/p-ZnPc in DMSO and for complexes np-QZnPc/p-QZnPc in DMSO, phosphate buffered solution (PBS) and PBS+Triton-X 100 solutions. The fluorescence of the tetra-substituted quaternized zinc phthalocyanine complexes (np-QZnPc/p-QZnPc) are effectively quenched addition of 1,4-benzoquinone (BQ) and this study also presented the ionic zinc phthalocyanine complexes strongly bind to bovine serum albumin (BSA).  相似文献   

5.
The synthesis, photophysical and photochemical properties of the tetra- and octa-[4-(benzyloxyphenoxy)] substituted gallium(III) and indium(III) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, 1H NMR spectroscopy and electronic spectroscopy. General trends are described for quantum yields of photodegredation, fluorescence quantum yields and lifetimes, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulfoxide (DMSO). Substituted indium phthalocyanine complexes (7b9b) showed much higher quantum yields of triplet state and shorter triplet lifetimes, compared to the substituted GaPc derivatives due to enhanced intersystem crossing (ISC) in the former. The gallium and indium phthalocyanine complexes showed phototransformation during laser irradiation due to ring reduction. The singlet oxygen quantum yields (ΦΔ), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.51 to 0.94. Thus, these complexes show potential as photodynamic therapy of cancer.  相似文献   

6.
The solvent viscosity dependence of the photophysical and photochemical properties of tetra(tert-butylphenoxy)phthalocyaninato zinc(II) (ZnTBPPc) is presented. The fluorescence quantum yields (ΦF) and Stern-Volmer′s constant (KSV) for ZnTBPPc fluorescence quenching by benzoquinone in all the solutions followed a semi-empirical law that depends only on the solvent viscosity. ΦF values vary between 0.08 in tetrahydrofuran (THF) and 0.14 in dimethylsulphoxide (DMSO). Triplet quantum yields (ΦT) and lifetimes (...  相似文献   

7.
This work reports on the synthesis, characterization and photophysical studies of phthalocyanine-gold nanoparticle conjugates. The phthalocyanine complexes are: tris-(5-trifluoromethyl-2-mercaptopyridine)-2-(carboxy)phthalocyanine (3), 2,9,17,23-tetrakis-[(1, 6-hexanedithiol) phthalocyaninato]zinc(II) (8) and [8,15,22-tris-(naptho)-2(amidoethanethiol) phthalocyanato] zinc(II)(10). The gold nanoparticles were characterized using transmission electron microscopy, X-ray diffraction, atomic force microscopy and UV-vis spectroscopy where the size was confirmed to be ~5 nm. The phthalocyanine Au nanoparticle conjugates showed lower fluorescence quantum yield values with similar fluorescence lifetimes compared to the free phthalocyanines. The Au nanoparticle conjugates of 3 and 10 also showed higher triplet quantum yields of 0.69 to 0.71, respectively. A lower triplet quantum yield was obtained for the conjugate compared to free phthalocyanine for complex 8. The triplet lifetimes ranged from 70 to 92 μs for the conjugates and from 110 to 304 μs for unbound Pc complexes.  相似文献   

8.
The synthesis, photophysical and photochemical properties of the tetra-substituted aryloxy gallium(III) and indium(III) phthalocyanines are reported for the first time. General trends are described for photodegradation, singlet oxygen, fluorescence, and triplet quantum yields and triplet lifetimes of these compounds. The introduction of phenoxy and tert-butylphenoxy substituents on the ring resulted in lowering of fluorescence quantum yields and lifetimes, and triplet quantum yields, and an increase of kIC, kISC, and kF. Photoreduction of the complexes was observed during laser flash photolysis. The singlet oxygen quantum yields (ΦΔ), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.41 to 0.91. Thus, these complexes show potential as Type II photosensitizers.  相似文献   

9.
The synthesis and characterization of new peripherally and non-peripherally tetra-substituted metal-free and zinc(II) phthalocyanines with 2-, 3- and 4-phenyloxyacetic acid functionalities are described for the first time in this study. The new compounds have been characterized by elemental analysis, FT-IR, UV-Vis, MALDI-TOF and 1H-NMR spectra. Photodegradation, singlet oxygen and fluorescence quantum yields, and fluorescence lifetimes of these compounds are studied in dimethylformamide (DMF). The influence of the substituent position on the phthalocyanine framework (non-peripherally or peripherally), central metal ion (metal-free or zinc) and the position of the COOH group (2-, 3- or 4-position on the phenyloxyacetic acid) on the spectroscopic, photophysical and photochemical properties have been investigated. Non-peripherally zinc(II) phthalocyanines (1b and 2b) and peripherally zinc(II) phthalocyanine (4b) gave good singlet oxygen quantum yields (ΦΔ) (0.37, 0.39 and 0.38, respectively) which indicate the potential of the complexes as photosensitizers in applications of PDT.  相似文献   

10.
Hairong Li 《Tetrahedron》2009,65(17):3357-2451
The synthesis and photophysical properties of a new series of zinc(II) phthalocyanines (ZnPcs) bearing multiple hydroxy and tert-butyl groups are reported. The X-ray structures of two phthalonitriles and one ZnPc are presented. All hydroxy-substituted ZnPcs show low fluorescence quantum yields in DMSO and complete fluorescence quenching in aqueous solutions, but high singlet oxygen quantum yields in DMSO (0.2-0.7). Our results suggest that the tetra- and octa-hydroxy ZnPcs might find application as photosensitizers in the PDT treatment of cancer.  相似文献   

11.
The photophysical and photochemical properties of tetrasulfonated silicon and germanium phthalocyanine (SiPcS4 and GePcS4) in aqueous solution (phosphate-buffered saline (PBS) solution, pH 7.4) (in the presence and absence of cremophore EL (CEL)) and in dimethylsulphoxide (DMSO) were studied. The complexes have intense absorption in the visible/near-IR region though they highly aggregate in aqueous solution with a dimerization constant of 2 × 104 dm3 mol−1. The fluorescence excitation spectra however have only one band suggesting that only the monomer fluoresces. Both the quantum yields of the triplet state (ΦT) and the triplet lifetimes (τT) were found to be higher in DMSO compared to in aqueous solution. Aggregation is hindered by addition of cremophore EL in aqueous solution and this induced disaggregation caused an increased ΦT and τT probably due to the reduced interaction of the phthalocyanines with the aqueous medium in the presence of CEL.  相似文献   

12.
The synthesis of novel 6,7-[(12-crown-4)-3-[p-(3,4-dicyanophenoxy)phenyl]coumarin (1), 6,7-[(12-crown-4)-3-[p-(2,3-dicyanophenoxy)phenyl]coumarin (2), and their corresponding tetra-(chromenone 12-crown-4)-substituted zinc (II) phthalocyanine complexes (3 and 4) have been prepared. These new compounds have been characterized by elementel analysis, (1)H NMR (1 and 2), MALDI-TOF, IR and UV-Vis spectral data. The fluorescence intensity changes for 1 and 2 by addition of Na(+) or K(+) ions have been determined at 25°C in THF. Intensity of the binding Na(+)- and K(+)-complexes (1 and 2) have decreased. The effects of the chromenone crown ether on the phthalocyanine molecule concerning photophysical and photochemical properties are also investigated. Photodegredation, singlet oxygen, fluorescence quantum yields, and fluorescence lifetimes of zinc phthalocyanine complexes (3 and 4) are also examined in DMSO.  相似文献   

13.
The photochemical and photophysical properties of peripheral and nonperipheral zinc and indium phthalocyanines containing 7‐oxy‐3,4‐dimethylcoumarin synthesized were investigated in this study. 7‐Hydroxy‐3,4‐dimethylcoumarin ( 1 ) was synthesized via Pechmann condensation reaction and then the phthalonitrile derivatives [4‐(7‐oxy‐3,4‐dimethylcoumarino)phthalonitrile ( 2 ) and 3‐(7‐oxy‐3,4‐dimethylcoumarino)phthalonitrile ( 3 )] were synthesized by nucleophilic aromatic substitution. Phthalocyanine compounds containing coumarin units on peripheral ( 4 and 5 ) and nonperipheral ( 6 and 7 ) positions were prepared via cyclotetramerization of phthalonitrile compounds. All compounds' characterizations were performed by spectroscopic methods and elemental analysis. The phthalocyanine derivatives' ( 4–7 ) photochemical and photophysical properties were studied in DMF. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen and photodegradation quantum yields) properties of these novel phthalocyanines ( 4 – 7 ) were studied in DMF. They produced good singlet oxygen (e.g., ΦΔ = 0.93 for 7 ) and showed appropriate photodegradation (in the order of 10?5), which is very important for photodynamic therapy applications.  相似文献   

14.
The synthesis and characterization of new peripherally tetra-3,5-dimethylpyrazole-1-methoxy substituted metal-free (4), zinc (5), nickel (6), cobalt (7), copper (8) and lead (9) phthalocyanines are described for the first time in this study. The photophysical (fluorescence quantum yields and fluorescence lifetimes) and photochemical (photodegradation and singlet oxygen quantum yields) properties of metal-free (4), zinc (5) and lead (9) phthalocyanines are studied in dimethylsulfoxide (DMSO). Nickel (6), cobalt (7) and copper (8) phthalocyanines (6-8) did not evaluate for this purpose due to transition metal and paramagnetic behavior of central metals in the phthalocyanine cavity. The fluorescence quenching behavior of metal-free (4), zinc (5) and lead (9) phthalocyanines are also investigated. The fluorescence emissions of these phthalocyanines are effectively quenched by 1,4-benzoquinone in DMSO.  相似文献   

15.
This work reports on the synthesis and photophysical properties of novel unsymmetrically substituted monocarboxy magnesium (MgPc, 3), aluminum (ClAlPc, 4) and unmetallated (H2Pc, 5) phthalocyanines. Magnesium phthalocyanine (3) was converted into water soluble quaternized derivative (QMgPc, 6) by reaction with methyl iodide. The synthesized phthalocyanines were characterized by IR, UV-Vis, NMR, mass spectrometry and elemental analyses. Photophysical and photochemical studies were carried out in order to determine the potential of the complexes as photosensitizers for use in photodynamic therapy. Triplet quantum yields ranged from 0.37 to 0.40 and triplet lifetimes from 110 to 140 μs in DMSO.  相似文献   

16.
This work reports on the synthesis, characterisation and photophysical properties of new asymmetric metal free, magnesium and zinc phthalocyanines containing a mono carboxylic acid group for possible linking to biological molecules via an amide bond. Successful synthesis of the phthalocyanines was achieved through the statistical condensation method. The phthalocyanines were mixed with folic acid and their photophysical properties were examined. The triplet quantum yield values for all the complexes in DMSO were between 0.49 and 0.74 and in the presence of folic acid they were between 0.37 and 0.63. The lifetimes were generally good ranging from 70 to 290 μs in the absence or presence of folic acid.  相似文献   

17.
The new tetra-non-peripherally benzenesulfonic acid-substituted hydrophilic gallium chloride and indium chloride phthalocyanine complexes have been synthesized by cyclotetramerization of 4-(2,3-dicyanophenyl)benzenesulfonic acid (1). The newly synthesized phthalocyanines have been characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, mass and UV–vis spectroscopy techniques. The water-soluble gallium(III) phthalocyanine derivative (2) was aggregated in aqueous media but was fully disaggregated in the presence of a surfactant Triton X-100. The incorporation of sulfonate moieties of the phthalocyanine macrocycle provides hydrophilic character to the new compounds, which is useful for drug administration and serves as crucial in PDT application. So, the photochemical properties (singlet oxygen quantum yields and photodegradation quantum yields) and photophysical properties (fluorescence behavior) of the complexes were reported in different solutions (DMSO and water). The results of spectral measurements showed that both np-GaPc (2) and np-InPc (3) can be used as sensitizers in PDT because of their singlet oxygen efficiencies.  相似文献   

18.
The photophysical properties, such as the UV-vis absorption spectra, triplet transient difference absorption spectra, triplet excited-state extinction coefficients, quantum yields of the triplet excited state, and lifetimes of the triplet excited state, of 10 novel zinc phthalocyanine derivatives with mono- or tetraperipheral substituents have been systematically investigated in DMSO solution. All these complexes exhibit a wide optical window in the visible spectral range and display long triplet excited-state lifetimes (140-240 mus). It has been found that the complexes with tetrasubstituents at the alpha-positions exhibit a bathochromic shift in their UV-vis absorption spectra, fluorescence spectra, and triplet transient difference absorption spectra and have larger triplet excited-state absorption coefficients. The nonlinear absorption of these complexes has been investigated using the Z-scan technique. It is revealed that all complexes exhibit a strong reverse saturable absorption at 532 nm for nanosecond and picosecond laser pulses. The excited-state absorption cross sections were determined through a theoretical fitting of the experimental data using a five-band model. The complexes with tetrasubstituents at the alpha-positions exhibit larger ratios of triplet excited-state absorption to ground-state absorption cross sections (sigma T/sigma g) than the other complexes. In addition, the wavelength-dependent nonlinear absorption of these complexes was studied in the range of 470-550 nm with picosecond laser pulses. All complexes exhibit reverse saturable absorption in a broad visible spectral range for picosecond laser pulses. Finally, the nonlinear transmission behavior of these complexes for nanosecond laser pulses was demonstrated at 532 nm. All complexes, and especially the four alpha-tetrasubstituted complexes, exhibit stronger reverse saturable absorption than unsubstituted zinc phthalocyanines due to the larger ratio of their excited-state absorption cross sections to their respective ground-state absorption cross sections.  相似文献   

19.
This work reports on the synthesis and photophysical parameters of tetra-and octa-substituted new lead phthalocyanines. The complexes synthesized are: 1,4-(tetraphenoxyphthalocyaninato)lead (7a), 1,4-(tetra-tert-butylphenoxyphthalocyaninato)lead (7b), 2,3-(tetraphenoxyphthalocyaninato)lead (8a), 2,3-(tetra-tert-butylphenoxyphthalocyaninato)lead (8b), 2,3-octaphenoxyphthalocyaninatolead (9a) 2,3-[octakis(4-t-butylphenoxyphthalocyaninato)]lead (9b). Photophysical properties were studied for these complexes in a dimethylsulfoxide, dimethylformamide, toluene, tetrahydrofuran and chloroform. The fluorescence spectra were different from excitation spectra due to demetallation upon excitation. High triplet quantum yields ranging from 0.70 to 0.88 (in DMSO, DMF and toluene) and low triplet lifetimes (20–50 μs in DMSO, and <10 μs in the rest of the solvents) were observed due to the presence of heavy atom.  相似文献   

20.
The new thiohexanoic acid substituted zinc phthalocyanine was synthesized and characterized by FT-IR, 1H–NMR, electronic spectroscopy, and mass spectrometry as well as DFT calculation studies. The photochemical properties (singlet-oxygen quantum yields and photodegradation quantum yields) and photophysical properties (fluorescence quantum yields and fluorescence behavior) of the compound were studied in dimethylsulfoxide (DMSO), dimethylformamide (DMF) and tetrahydrofuran (THF). Singlet-oxygen quantum yields ranged from 0.29 to 0.43. However, energy-minimized structure, vibrational frequency, electronic distribution and molecular orbitals were obtained by DFT calculations which were supported by experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号