首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Polyethylene terephthalate (PET) bottles, which are usually produced by injection stretch blow moulding (ISBM) are widely used for carbonated soft drinks (CSD) storage and transportation. Stretch rod movement, blow pressure, preform temperature profile, mould surface temperature and material properties are among the most important factors affecting the final product's quality in terms of the thickness distribution, burst pressure and top-load resistance of the bottles. However, the residence time of the blown bottle inside the mould is also an important factor affecting its final properties. Especially in PET bottle production for hot fillings, the residence time is a very important factor because the longer the residence time the better the crystalline structure of the PET. In this production, the lid section is desired to have a fully crystalline form so that it can withstand hot fluids. In this study, the aim was to optimise the mould surface temperature and the blown bottle's residence time inside the mould for 1 L soft drink PET bottle production based on the final properties using the ECHIP 7 design of experiment (DOE) program. The method employed through this program was a quadratic one. Optimum process parameters were determined by the response surface method (RSM) and the process settings ensuring maximum top-load, burst pressure, Tg and degree of crystallinity were regarded to be optimum. It was found that the optimum mould surface temperature and blown bottle residence time inside the mould were 10 °C and 20 s, respectively.  相似文献   

2.
Polyethyleneterephtalate (PET) and polytetrafluorethylene (PTFE) foils were modified by plasma discharge. The effect of plasma modification on polymer surface wettability and on properties of gold coatings were studied as a function of time from plasma exposure (aging time) and polymer substrate temperature. Thickness, sheet resistance, and surface topology of gold layers were studied. Aging of the plasma‐exposed samples is accompanied by increase in contact angle, which is explained by rearrangement of the polymer segments in the polymer surface monolayer, and a decrease in the concentration of polar groups. The aging also leads to a decline in surface roughness Ra measured by atomic force microscopy (AFM). Under deposition conditions, comparable thicknesses of deposited Au layers were prepared on pristine PET and plasma‐treated PET and PTFE samples. The thinnest Au layers were evaporated onto pristine PTFE. The sheet resistance decreases with increasing thickness of Au layer. Plasma treatment leads to an increase of PTFE surface roughness, which becomes even more pronounced after Au deposition. A higher roughness shows that the PET samples are deposited with the Au layer at temperatures above the glassy transition temperature Tg. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
In this work, the hydrophilic improvement of a woven PET surface was accomplished by a plasma technique. The woven PET surface was plasma-treated by dielectric barrier discharge (DBD) under various operating conditions (electrode gap distance, plasma treatment time, input voltage, and input frequency) and various gaseous environments (air, O2, N2, and Ar) in order to improve its hydrophilicity. It was experimentally found that a decrease in electrode gap distance and an increase in input voltage increased the electric field strength, leading to higher hydrophilicity of the PET surface characterized by wickability and contact angle measurements. In comparisons among the studied environmental gases, air gave the highest hydrophilicity, being comparable to O2, while Ar and N2 gave lower hydrophilicity of the woven PET surface. The optimum conditions for a maximum hydrophilicity of the PET surface were an electrode gap distance of 4 mm, a plasma treatment time of 10 s, an output voltage of 15 kV, and a frequency of 350 Hz under air environment. After the plasma treatment under the obtained optimum conditions, the woven PET was loaded with Ag particles using a AgNO3 aqueous solution in order to obtain the antimicrobial property. The plasma-treated woven PET loaded with Ag particles exhibited good antimicrobial activity against both E. coli (gram-negative bacteria) and S. aureus (gram-positive bacteria).  相似文献   

4.
The correlation between plasma optical properties and the treated polyethylene terephthalate (PET) surface characteristics have been studied at various Ar flow rate. The rotational Trot and vibrational Tvib temperatures of APPJ were determined from SPS emission band. The pristine and plasma-treated PET surfaces were characterized by several techniques including X-ray photoelectrons spectroscopy (XPS), Raman spectroscopy, contact angle (CA), and atomic force microscope (AFM). The CA decreased rapidly in the flow rate range 1–3 L/min and weakly dependent as flow rate > 3 L/min. XPS results showed that C 1s % of plasma-treated PET surfaces decreases and has a minimum for samples treated at 3–4 L/min, while O 1s has a maximum at the same flow rate range. The carbon C 1s peak of pristine and plasma treated PET samples resolved into five subcomponents: C–C, C–O, C=O, O–C=O, and π–π bonds with variable percentage ratio accordance to the plasma gas flow rate. Raman data revealed a partial loss in the crystallinity of the treated PET samples and also confirm the incremental of C–O band at Ar flow rate of 3 L/min. AFM images showed that the surface roughness of treated PET films increases as Ar flow rate increases.  相似文献   

5.
Non-woven polyethylene terephthalate (PET) fibers produced via melt blowing and compounded into a 6 mm diameter 3D tubular scaffold were developed with artery matching mechanical properties. This work compares the effects of ethylene oxide (EtO) and low temperature plasma (LTP) sterilization on PET surface chemistry and biocompatibility. As seen through X-ray photoelectron spectroscopy (XPS) analysis, LTP sterilization led to an increase in overall oxygen content and the creation of new hydroxyl groups. EtO sterilization induced alkylation of the PET polymer. The in vitro cytotoxicity showed similar fibroblastic viability on LTP- and EtO-treated PET fibers. However, TNF-α release levels, indicative of macrophage activation, were significantly higher when macrophages were incubated on EtO-treated PET fibers. Subcutaneous mice implantation revealed an inflammatory response with foreign body reaction to PET grafts independent of the sterilization procedure.  相似文献   

6.
Adhesion studies of bacteria (Staphylococcus epidermidis) to plasma modified PET films were conducted in order to determine the role of the surface free energy under static and dynamic conditions. In particular, we investigated the effect of the ageing time on the physicochemical surface properties of helium (He) and 20% of oxygen in helium (He/O2) plasma treated polyethylene terephthalate (PET) as well as on the bacterial adhesion. Treatment conditions especially known to result in ageing sensitive hydrophilicity (hydrophobic recovery) were intentionally chosen in an effort to obtain the widest possible range of surface energy specimens and also to avoid strong changes in the morphological properties of the surface. Both plasma treatments are shown to significantly reduce bacterial adhesion in comparison to the untreated PET. However, the ageing effect and the subsequent decrease in the surface free energy of the substratum surfaces with time – especially in the case of He treated samples – seem to favor bacterial adhesion and aggregation. The dispersion-polar and the Lifshitz–van der Waals (LW) acid–base (AB) thermodynamic approaches were applied to calculate the Gibbs free energy changes of adhesion (ΔGadh) of S. epidermidis interacting with the substrates. There was a strong correlation between the thermodynamic predictions and the measured values of bacterial adhesion, when adhesion was performed under static conditions. By decoupling the (ΔGadh) values into their components, we observed that polar/acid–base interactions dominated the interactions of bacteria with the substrates in aqueous media. However, under flow conditions, the increase in the shear rate restricted the predictability of the thermodynamic models.  相似文献   

7.
Using a plasma-induced graft polymerization technique, which is well known as a surface modification method, the grafted polymer was formed in pores of the porous material. This study examined the filling mechanism. Five thin porous films were sandwiched together, and employed as the substrate. The substrate was treated by plasma, and the change in surface tension and radical formation was measured for each sheet after the sheet was separated. The only surface on which surface-tension change was detected, was that of the sheet directly exposed to the plasma. Although plasma treatment made polymer radicals primarily on the outer surface of the sheet, the treatment also formed a few radicals inside the sheets. The radicals inside the sheets reacted with methylacrylate and grafted polymer formed in the pores. The location of grafted polymer depended on the balance between monomer diffusivity and reactivity. The grafting rate depended on which monomer solvent was used for the polymerization. Thus, the grafted membrane morphology could be controlled by varying the grating solvent composition. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
The recycling of soft drink bottles poly(ethylene terephthalate) (PET) has been used as an additive in varnish containing alkyd resin. The PET, called to recycled PET (PET-R), was added to the varnish in increasing amounts. Samples of varnish containing PET-R (VPET-R) were used as a film onto slides and its thermal properties were evaluated using thermogravimetry (TG). Throughout the visual analysis and thermal behavior of VPET-R it is possible to identify that the maximum amount of PET-R added to the varnish without changing in the film properties was 2%. The kinetic parameters, such as activation energy (E) and the pre-exponential factor (A) were calculated by the isoconversional Flynn-Wall-Ozawa method for the samples containing 0.5 to 2.0% PET-R. A decrease in the values of E was verified for lower amounts of PET-R for the thermal decomposition reaction. A kinetic compensation effect (KCE) represented by the lnA=−13.42+0.23E equation was observed for all samples. The most suitable kinetic model to describe this decomposition process is the autocatalytic Šesták-Berggren, being the model applied to heterogeneous systems.  相似文献   

9.
<正>Bamboo charcoal polyester fiber(BC-PET) has been widely applied in home textiles,functional clothing and hydra-balance material,due to their strong adsorptivity,good resolvability,anti-statics,deodorization,antibacterial,anion releasing and far infrared emitting.But BC-PET is black and difficult to be dyed,and its application is limited.In this article,nitric acid was used to treat the surface of bamboo charcoal(BC) powder,and BC powder was modified by titanium dioxide sol to prepare white bamboo charcoal(white-BC) particle.White bamboo charcoal polyester fiber(white-BC-PET) was obtained by mixing white-BC and polyester(PET) resin in double screw extruder.Performance of fiber was tested referring to national standard GB/T14464-2008 of common PET fiber and most of its indicators have already exceeded GB the level of excellent product.SEM photographs showed that the white-BC was uniformly distributed inside or on the surface of fiber.The white-BC-PET could absorb some aniline and had at least 90%anti-bacterial rate.The anti-bacterial rate could have almost been kept after it was washed 50 times.It was hopeful to be applied in various fields as functional fiber.  相似文献   

10.
In this work, a woven PET with an antimicrobial activity was prepared by depositing chitosan on its surface. Firstly, the hydrophilic property of the PET surface was achieved by a plasma treatment using dielectric barrier discharge (DBD). The hydrophilic property of the PET surface was characterized by wickability and contact angle measurements. The XPS analysis revealed an increment of oxygen-containing polar groups, such as C–O and O–C=O, on the PET surface after the plasma treatment, resulting in an enhanced hydrophilic property. The plasma-treated PET specimen was further deposited with chitosan by immersing in a chitosan acetate aqueous solution. The effects of temperature, chitosan concentration, and number of rinses on the amount of deposited chitosan on the PET surface were investigated. The disappearance of the above-mentioned polar groups from the PET surface was clearly observed after the chitosan deposition, indicating the involvement of these functional groups in interacting with the chitosan. The chitosan-deposited plasma-treated woven PET possessed an exceptionally high antimicrobial activity against both E. coli (gram-negative bacteria) and S. aureus (gram-positive bacteria).  相似文献   

11.
In this paper, we present a study on the surface modification of polyethyleneterephthalate (PET) polymer by plasma treatment. The samples were treated by nitrogen and oxygen plasma for different time periods between 3 and 90 s. The plasma was created by a radio frequency (RF) generator. The gas pressure was fixed at 75 Pa and the discharge power was set to 200 W. The samples were treated in the glow region, where the electrons temperature was about 4 eV, the positive ions density was about 2 × 1015 m?3, and the neutral atom density was about 4 × 1021 m?3 for oxygen and 1 × 1021 m?3 for nitrogen. The changes in surface morphology were observed by using atomic force microscopy (AFM). Surface wettability was determined by water contact angle measurements while the chemical composition of the surface was analyzed using XPS. The stability of functional groups on the polymer surface treated with plasma was monitored by XPS and wettability measurements in different time intervals. The oxygen‐plasma‐treated samples showed much more pronounced changes in the surface topography compared to those treated by nitrogen plasma. The contact angle of a water drop decreased from 75° for the untreated sample to 20° for oxygen and 25° for nitrogen‐plasma‐treated samples for 3 s. It kept decreasing with treatment time for both plasmas and reached about 10° for nitrogen plasma after 1 min of plasma treatment. For oxygen plasma, however, the contact angle kept decreasing even after a minute of plasma treatment and eventually fell below a few degrees. We found that the water contact angle increased linearly with the O/C ratio or N/C ratio in the case of oxygen or nitrogen plasma, respectively. Ageing effects of the plasma‐treated surface were more pronounced in the first 3 days; however, the surface hydrophilicity was rather stable later. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A set of bottled waters from a single natural spring distributed worldwide in polyethylene terephthalate (PET) bottles has been used to examine the effects of storage in plastic polymer material on the isotopic composition (delta18O and delta2H values) of the water. All samples analyzed were subjected to the same packaging procedure but experienced different conditions of temperature and humidity during storage. Water sorption and the diffusive transfer of water and water vapor through the wall of the PET bottle may cause isotopic exchange between water within the bottle and water vapor in air near the PET-water interface. Changes of about +4 per thousand for delta2H and +0.7 per thousand for delta18O have been measured for water after 253 days of storage within the PET bottle. The results of this study clearly indicate the need to use glass bottles for storing water samples for isotopic studies. It is imperative to transfer PET-bottled natural waters to glass bottles for their use as calibration material or potential international working standards.  相似文献   

13.
Thymol, an antibacterial agent was used for the preparation of a methacrylic monomer. The conventional and atom transfer radical (ATRP) polymerizations of this monomer were studied using different conditions. Then, the functionalization of poly(ethylene terephthalate) (PET) films by “grafting from” ATRP using this monomer was investigated. In this aim, a three steps procedure was developed. The surfaces were first treated by NH3 plasma treatment to incorporate primary amino functions. Then, in a second step, ATRP initiator was grafted by reaction with bromoisobutyryl bromide. Surface initiated ATRP of thymyl methacrylate was performed in solution in the presence of a sacrificial initiator. The efficiency of these reactions was confirmed by X‐ray photoelectron spectroscopy. Wetting properties and surface energy were found to vary systematically depending to the type of functionalization and grafting. The poly(thymyl methacrylate)‐grafted PET surfaces exhibit resistance to bacterial adhesion toward Pseudomonas aeruginosa, Listeria monocytogenes, and Staphylococcus aureus strains. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1975–1985  相似文献   

14.
Branched polyethylene, melt-crystallized in commercial fabrication processes, cleaves into two layers when exposed to a prolonged “chemical filling” treatment (i.e., formation of filler in situ by interdiffusion of two reactive permeants). Cleavage has been observed in film and blown bottles. With film, progressive changes in experimental conditions from one sample to another, shifted the cleavage plane from near the surface to deeper lying planes. Separation of a thin surface layer requires more filler deposit than does separation into layers of more equal thickness. These observations suggest that a well defined layer structure may exist in branched polyethylene and that cohesive bonding is stronger between layers near the surface of the film than it is between deeper lying layers. Linear polyethylene showed slight layer separation after prolonged chemical filling, but clean cut separation of large areas was not achieved. This behavior may indicate that the cohesive bonding between layers is much stronger in linear polyethylene than in branched polyethylene.  相似文献   

15.
The optical emission from tetrafluoromethane plasma (2% argon included) has been studied by emission spectroscopy. The evolution ofCF *,CF 2 * , andF emissions has been followed during the treatment of an organic surface. An-alkane, hexatriacontane, has been used as a model for high density polyethylene surface and treated in different plasma conditions. We found that the evolution of fluorinated species emissions in the plasma gas phase is not only a measurement of the reactive species concentrations, but also an indication of the surface modifications. The surface properties, such as surface energy and surface roughness are correlated to the emission intensity of reactives species in the plasma gas phase. A mild exposure to the plasma can result in a great decrease of surface energy corresponding to the fluorination. The surface roughness only changes under drastic plasma conditions.  相似文献   

16.
The plasma treatment of polymer surfaces is routinely used to enhance surface properties prior to adhesive bonding or biomolecule interaction. This study investigates the influence of plasma treatment conditions on the surface activation of polyethylene terephthalate (PET) using the SurFx Atomflo? 400L plasma source. In this study the effect of applied plasma power, processing speed, gas composition and plasma applicator nozzle to substrate distance were examined. The level of polymer surface activation was evaluated based on changes to the water contact angle (WCA) of PET samples after plasma treatment. PET surface properties were also monitored using surface energy and X-ray photoelectron spectroscopy (XPS) analysis. The heating effect of the plasma was monitored using thermal imaging and optical emission spectroscopy (OES) techniques. OES was also used as a diagnostic tool to monitor the change in atomic and molecular species intensity with changes in experimental conditions in both time and space. XPS analysis of the PET samples treated at different plasma powers indicated that increased oxygen content on samples surfaces accounted for the decreases observed in WCAs. For the first time a direct correlation was obtained between polymer WCA changes and the OES measurement of the atomic hydrogen Balmer Hα and molecular OH line emission intensities.  相似文献   

17.
In this paper, we investigated the effect of light driving force induced surface deformation on azobenzene-containing polymers. The surface deformation is attributed to light-induced mass migration inside the polymers. Circular cap arrays are firstly fabricated by high power laser ablation via polarization controlled three-beam interference. The circular caps are subsequently exposed to polarization controlled two-beam interfering field. The results illuminate that when the interfering laser beams are both set to P polarization, the circular caps are deformed. While the laser beams are of other interfering modes like (S, S) and (+45° , -45°), the caps are seldom deformed. The circular caps are also exposed to single intensity-homogeneous linearly polarized laser beam. The deformation of the caps keeps the same direction as the irradiating polarization. A model based on the focusing effect of the circular caps is addressed to explain the origin of the light driving force for mass migration in azopolymers. The all-optical approach for the production of deformed caps can be used to generate aspherical lens, which may be applied to many domains.  相似文献   

18.
Amine functionalization of Poly(ethylene-terephthalate) (PET) films for covalent binding of peptides is described. Ammonia plasma treatments have been used to graft nitrogen-containing functional groups onto the PET surface. The samples were then analyzed by X-ray photoelectron spectroscopy (XPS) and a parametric study was performed to define the best plasma grafting conditions. For biological tests, samples were sterilized by steam autoclaving: this induces a four to fivefold loss of the nitrogen functional groups on the polymer surface. XPS does not differentiate easily between the various nitrogen groups present on the surface so it is difficult to estimate the amount of surface amine groups available for direct coupling of bioactive molecules (proteins, peptides, nucleic acids, ...). To obtain a direct measurement of the amines present, we assayed for cysteine fixation through its carboxylic group by detection of the thiolaminoacid by XPS. We obtained cysteine fixation, showing the presence of grafted primary amine functions on PET surface after ammonia plasma treatment. Radiochemical assays were also made to quantify the amount of amine groups on plasma treated PET. XPS, cysteine fixation and radiochemical assays all show the presence of amine functions on ammonia plasma treated PET.  相似文献   

19.
The introduction of antibacterial property, conductivity, wettability and antithrombogenicity into polyolefin‐based membranes has evoked much attention, which can be achieved by coating hydrophilic polymers. Therefore, it is necessary to modify the roughness and hydrophilicity of polyolefin‐based membranes to enhance the coating ability. In this paper, three kinds of plasma methods, including inductively coupled (ICP) plasma, radio frequency low pressure (RFP) plasma and atmospheric dielectric barrier discharge (DBD) plasma, were used to modify the surface of the polyethylene (PE), polypropylene (PP) and polyester‐polypropylene (PET–PP) membranes. The surface roughness of the plasma‐modified PE, PP and PET–PP films was investigated by scanning electron microscopy (SEM) and atomic force microscope (AFM). The polar functional groups of films were observed by energy dispersive spectrometer (EDX) and X‐ray photoelectron spectroscopy (XPS). Besides, the hydrophilicity of the plasma‐modified PE, PP and PET–PP films was evaluated by water contact angle measurement. It was found that the surface roughness and hydrophilicity of plasma‐modified PE, PP and PET–PP films increased with the generation of oxygen‐containing functional groups (i.e. C―O, and C?O). The PET–PP membranes were treated by RFP plasma at different processing powers and times. These results indicated that plasma is an effective way to modify films, and the treatment time and power of plasma had a certain accumulation effect on the membranes' hydrophilicity. As for the roughness and hydrophilicity, the DBD plasma modifies the PE film, which is the optimum way to get the ideal roughness and hydrophilicity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Translational mobility of n-decane molecules in a porous space of NaX zeolite was studied within the wide ranges of diffusion times and temperatures. The dependence of the effective self-diffusion coefficient on diffusion time was established. Confined mobility of diffusant molecules inside the crystallite was observed both for complete and partial filling of NaX pores with a liquid, when the adsorption barrier was absent at the interface between intra- and intercrystallite regions. It was suggested that obstacles are present at the surface of NaX crystallites complicating the transfer of liquid molecules from crystallite channels to intercrystallite space. True value of self-diffusion coefficient ofn-decane in the itracrystallite space of NaX was determined and its dependence on the concentration of liquid molecules in zeolite channels was considered. A special attention was paid to the study of molecular exchange between intra- and intercrystallite-confined liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号