首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Optimization》2012,61(12):1473-1491
Most real-life optimization problems require taking into account not one, but multiple objectives simultaneously. In most cases these objectives are in conflict, i.e. the improvement of some objectives implies the deterioration of others. In single-objective optimization there exists a global optimum, while in the multi-objective case no optimal solution is clearly defined, but rather a set of solutions. In the last decade most papers dealing with multi-objective optimization use the concept of Pareto-optimality. The goal of Pareto-based multi-objective strategies is to generate a front (set) of non-dominated solutions as an approximation to the true Pareto-optimal front. However, this front is unknown for problems with large and highly complex search spaces, which is why meta-heuristic methods have become important tools for solving this kind of problem. Hybridization in the multi-objective context is nowadays an open research area. This article presents a novel extension of the well-known Pareto archived evolution strategy (PAES) which combines simulated annealing and tabu search. Experiments on several mathematical problems show that this hybridization allows an improvement in the quality of the non-dominated solutions in comparison with PAES, and also with its extension M-PAES.  相似文献   

2.
Real optimization problems often involve not one, but multiple objectives, usually in conflict. In single-objective optimization there exists a global optimum, while in the multi-objective case no optimal solution is clearly defined but rather a set of optimums, which constitute the so called Pareto-optimal front. Thus, the goal of multi-objective strategies is to generate a set of non-dominated solutions as an approximation to this front. However, most problems of this kind cannot be solved exactly because they have very large and highly complex search spaces. The objective of this work is to compare the performance of a new hybrid method here proposed, with several well-known multi-objective evolutionary algorithms (MOEA). The main attraction of these methods is the integration of selection and diversity maintenance. Since it is very difficult to describe exactly what a good approximation is in terms of a number of criteria, the performance is quantified with adequate metrics that evaluate the proximity to the global Pareto-front. In addition, this work is also one of the few empirical studies that solves three-objective optimization problems using the concept of global Pareto-optimality.  相似文献   

3.
In single-objective optimization it is possible to find a global optimum, while in the multi-objective case no optimal solution is clearly defined, but several that simultaneously optimize all the objectives. However, the majority of this kind of problems cannot be solved exactly as they have very large and highly complex search spaces. Recently, meta-heuristic approaches have become important tools for solving multi-objective problems encountered in industry as well as in the theoretical field. Most of these meta-heuristics use a population of solutions, and hence the runtime increases when the population size grows. An interesting way to overcome this problem is to apply parallel processing. This paper analyzes the performance of several parallel paradigms in the context of population-based multi-objective meta-heuristics. In particular, we evaluate four alternative parallelizations of the Pareto simulated annealing algorithm, in terms of quality of the solutions, and speedup.  相似文献   

4.
Pareto local search (PLS) methods are local search algorithms for multi-objective combinatorial optimization problems based on the Pareto dominance criterion. PLS explores the Pareto neighbourhood of a set of non-dominated solutions until it reaches a local optimal Pareto front. In this paper, we discuss and analyse three different Pareto neighbourhood exploration strategies: best, first, and neutral improvement. Furthermore, we introduce a deactivation mechanism that restarts PLS from an archive of solutions rather than from a single solution in order to avoid the exploration of already explored regions. To escape from a local optimal solution set we apply stochastic perturbation strategies, leading to stochastic Pareto local search algorithms (SPLS). We consider two perturbation strategies: mutation and path-guided mutation. While the former is unbiased, the latter is biased towards preserving common substructures between 2 solutions. We apply SPLS on a set of large, correlated bi-objective quadratic assignment problems (bQAPs) and observe that SPLS significantly outperforms multi-start PLS. We investigate the reason of this performance gain by studying the fitness landscape structure of the bQAPs using random walks. The best performing method uses the stochastic perturbation algorithms, the first improvement Pareto neigborhood exploration and the deactivation technique.  相似文献   

5.
Interest in the design of efficient meta-heuristics for the application to combinatorial optimization problems is growing rapidly. The optimal design of water distribution networks is an important optimization problem which consists of finding the best way of conveying water from the sources to the users, thus satisfying their requirements. The efficient design of looped networks is a much more complex problem than the design of branched ones, but their greater reliability can compensate for the increase in cost when closing some loops. Mathematically, this is a non-linear optimization problem, constrained to a combinatorial space, since the diameters are discrete and it has a very large number of local solutions. Many works have dealt with the minimization of the cost of the network but few have considered their cost and reliability simultaneously. The aim of this paper is to evaluate the performance of an implementation of Scatter Search in a multi-objective formulation of this problem. Results obtained in three benchmark networks show that the method here proposed performs accurately well in comparison with other multi-objective approaches also implemented.  相似文献   

6.
《Optimization》2012,61(10):1661-1686
ABSTRACT

Optimization over the efficient set of a multi-objective optimization problem is a mathematical model for the problem of selecting a most preferred solution that arises in multiple criteria decision-making to account for trade-offs between objectives within the set of efficient solutions. In this paper, we consider a particular case of this problem, namely that of optimizing a linear function over the image of the efficient set in objective space of a convex multi-objective optimization problem. We present both primal and dual algorithms for this task. The algorithms are based on recent algorithms for solving convex multi-objective optimization problems in objective space with suitable modifications to exploit specific properties of the problem of optimization over the efficient set. We first present the algorithms for the case that the underlying problem is a multi-objective linear programme. We then extend them to be able to solve problems with an underlying convex multi-objective optimization problem. We compare the new algorithms with several state of the art algorithms from the literature on a set of randomly generated instances to demonstrate that they are considerably faster than the competitors.  相似文献   

7.
The aim of this paper is the development of an algorithm to find the critical points of a box-constrained multi-objective optimization problem. The proposed algorithm is an interior point method based on suitable directions that play the role of gradient-like directions for the vector objective function. The method does not rely on an “a priori” scalarization and is based on a dynamic system defined by a vector field of descent directions in the considered box. The key tool to define the mentioned vector field is the notion of vector pseudogradient. We prove that the limit points of the solutions of the system satisfy the Karush–Kuhn–Tucker (KKT) first order necessary condition for the box-constrained multi-objective optimization problem. These results allow us to develop an algorithm to solve box-constrained multi-objective optimization problems. Finally, we consider some test problems where we apply the proposed computational method. The numerical experience shows that the algorithm generates an approximation of the local optimal Pareto front representative of all parts of optimal front.  相似文献   

8.
We propose a novel cooperative swarm intelligence algorithm to solve multi-objective discrete optimization problems (MODP). Our algorithm combines a firefly algorithm (FA) and a particle swarm optimization (PSO). Basically, we address three main points: the effect of FA and PSO cooperation on the exploration of the search space, the discretization of the two algorithms using a transfer function, and finally, the use of the epsilon dominance relation to manage the size of the external archive and to guarantee the convergence and the diversity of Pareto optimal solutions.We compared the results of our algorithm with the results of five well-known meta-heuristics on nine multi-objective knapsack problem benchmarks. The experiments show clearly the ability of our algorithm to provide a better spread of solutions with a better convergence behavior.  相似文献   

9.
Decomposition based multi-objective evolutionary algorithm (MOEA/D) has been proved to be effective on multi-objective optimization problems. However, it fails to achieve satisfactory coverage and uniformity on problems with irregularly shaped Pareto fronts, like the reservoir flood control operation (RFCO) problem. To enhance the performance of MOEA/D on the real-world RFCO problem, a Pareto front relevant (PFR) decomposition method is developed in this paper. Different front the decomposition method in the original MOEA/D which is based on a unique reference point (i.e. the estimated ideal point), the PFR decomposition method uses a set of reference points which are uniformly sampled from the fitting model of the obtained Pareto front. As a result, the PFR decomposition method can provide more flexible adaptation to the Pareto front shapes of the target problems. Experimental studies on benchmark problems and typical RFCO problems at Ankang reservoir have illustrated that the proposed PFR decomposition method significantly improves the adaptivity of MOEA/D to the complex Pareto front shape of the RFCO problem and performs better both in terms of coverage and uniformity.  相似文献   

10.
The diversity of solutions is very important for multi-objective evolutionary algorithms to deal with multi-objective optimization problems (MOPs). In order to achieve the goal, a new orthogonal evolutionary algorithm based on objective space decomposition (OEA/D) is proposed in this paper. To be specific, the objective space of an MOP is firstly decomposed into a set of sub-regions via a set of direction vectors, and OEA/D maintains the diversity of solutions by making each sub-region have a solution to the maximum extent. Also, the quantization orthogonal crossover (QOX) is used to enhance the search ability of OEA/D. Experimental studies have been conducted to compare this proposed algorithm with classic MOEA/D, NSGAII, NICA and D2MOPSO. Simulation results on six multi-objective benchmark functions show that the proposed algorithm is able to obtain better diversity and more evenly distributed Pareto fronts than other four algorithms.  相似文献   

11.
Multi-objective optimization has been successfully applied to problems of industrial design, problems of quality control and production management, and problems of finance. The theme of these applications is how to choose the best solution for the decision makers out of a set of non-inferior solutions to a multi-objective optimization problem. For this purpose, an optimization model with hierarchical structure, whose lower problem is a multi-objective optimization problem and the upper problem is a preference optimization problem on a set of non-inferior solutions, must be constructed. This kind of hierarchical problems have been previously analyzed only with regard to linear programming problems by Benson[6]. In this paper, an algorithm is derived that provides a solution as a social choice, obtained by aggregating plural decision-makers' preferences. In the case of the simple majority rule, the bi-objective problem is transformed into an -parameter choice problem, and the golden section method is applied. The availability of the approach is demonstrated with the means of an illustrative example.Technische Universität BerlinFaculty of Science and Technology, Keio University  相似文献   

12.
This paper presents a preference-based method to handle optimization problems with multiple objectives. With an increase in the number of objectives the computational cost in solving a multi-objective optimization problem rises exponentially, and it becomes increasingly difficult for evolutionary multi-objective techniques to produce the entire Pareto-optimal front. In this paper, an evolutionary multi-objective procedure is combined with preference information from the decision maker during the intermediate stages of the algorithm leading to the most preferred point. The proposed approach is different from the existing approaches, as it tries to find the most preferred point with a limited budget of decision maker calls. In this paper, we incorporate the idea into a progressively interactive technique based on polyhedral cones. The idea is also tested on another progressively interactive approach based on value functions. Results are provided on two to five-objective unconstrained as well as constrained test problems.  相似文献   

13.
With increasing concern about global warming and haze, environmental issue has drawn more attention in daily optimization operation of electric power systems. Economic emission dispatch (EED), which aims at reducing the pollution by power generation, has been proposed as a multi-objective, non-convex and non-linear optimization problem. In a practical power system, the problem of EED becomes more complex due to conflict between the objectives of economy and emission, valve-point effect, prohibited operation zones of generating units, and security constraints of transmission networks. To solve this complex problem, an algorithm of a multi-objective multi-population ant colony optimization for continuous domain (MMACO_R) is proposed. MMACO_R reconstructs the pheromone structure of ant colony to extend the original single objective method to multi-objective area. Furthermore, to enhance the searching ability and overcome premature convergence, multi-population ant colony is also proposed, which contains ant populations with different searching scope and speed. In addition, a Gaussian function based niche search method is proposed to enhance distribution and accuracy of solutions on the Pareto optimal front. To verify the performance of MMACO_R in different multi-objective problems, benchmark tests have been conducted. Finally, the proposed algorithm is applied to solve EED based on a six-unit system, a ten-unit system and a standard IEEE 30-bus system. Simulation results demonstrate that MMACO_R is effective in solving economic emission dispatch in practical power systems.  相似文献   

14.
为提高已有多目标进化算法在求解复杂多目标优化问题上的收敛性和解集分布性,提出一种基于种群自适应调整的多目标差分进化算法。该算法设计一个种群扩增策略,它在决策空间生成一些新个体帮助搜索更优的非支配解;设计了一个种群收缩策略,它依据对非支配解集的贡献程度淘汰较差的个体以减少计算负荷,并预留一些空间给新的带有种群多样性的扰动个体;引入精英学习策略,防止算法陷入局部收敛。通过典型的多目标优化函数对算法进行测试验证,结果表明所提算法相对于其他算法具有明显的优势,其性能优越,能够在保证良好收敛性的同时,使获得的Pareto最优解集具有更均匀的分布性和更广的覆盖范围,尤其适合于高维复杂多目标优化问题的求解。  相似文献   

15.
The covariance matrix adaptation evolution strategy (CMA-ES) is one of the state-of-the-art evolutionary algorithms for optimization problems with continuous representation. It has been extensively applied to single-objective optimization problems, and different variants of CMA-ES have also been proposed for multi-objective optimization problems (MOPs). When applied to MOPs, the traditional steps of CMA-ES have to be modified to accommodate for multiple objectives. This fact is particularly evident when the number of objectives is higher than 3 and, with a high probability, all the solutions produced become non-dominated. An open question is to what extent information about the objective values of the non-dominated solutions can be injected in the CMA-ES model for a more effective search. In this paper, we investigate this general question using several metrics that describe the quality of the solutions already evaluated, different transfer weight functions, and a set of difficult benchmark instances including many-objective problems. We introduce a number of new strategies that modify how the probabilistic model is learned in CMA-ES. By conducting an exhaustive empirical analysis on two difficult benchmarks of many-objective functions we show that the proposed strategies to infuse information about the quality indicators into the learned models can achieve consistent improvements in the quality of the Pareto fronts obtained and enhance the convergence rate of the algorithm. Moreover, we conducted a comparison with a state-of-the-art algorithm from the literature, and achieved competitive results in problems with irregular Pareto fronts.  相似文献   

16.
Dynamic optimization and multi-objective optimization have separately gained increasing attention from the research community during the last decade. However, few studies have been reported on dynamic multi-objective optimization (dMO) and scarce effective dMO methods have been proposed. In this paper, we fulfill these gabs by developing new dMO test problems and new effective dMO algorithm. In the newly designed dMO problems, Pareto-optimal decision values (i.e., Pareto-optimal solutions: POS) or both POS and Pareto-optimal objective values (i.e., Pareto-optimal front: POF) change with time. A new multi-strategy ensemble multi-objective evolutionary algorithm (MS-MOEA) is proposed to tackle the challenges of dMO. In MS-MOEA, the convergence speed is accelerated by the new offspring creating mechanism powered by adaptive genetic and differential operators (GDM); a Gaussian mutation operator is employed to cope with premature convergence; a memory like strategy is proposed to achieve better starting population when a change takes place. In order to show the advantages of the proposed algorithm, we experimentally compare MS-MOEA with several algorithms equipped with traditional restart strategy. It is suggested that such a multi-strategy ensemble approach is promising for dealing with dMO problems.  相似文献   

17.
Pareto-optimality conditions are crucial when dealing with classic multi-objective optimization problems. Extensions of these conditions to the fuzzy domain have been discussed and addressed in recent literature. This work presents a novel approach based on the definition of a fuzzily ordered set with a view to generating the necessary conditions for the Pareto-optimality of candidate solutions in the fuzzy domain. Making use of the conditions generated, one can characterize fuzzy efficient solutions by means of carefully chosen mono-objective problems and Karush-Kuhn-Tucker conditions to fuzzy non-dominated solutions. The uncertainties are inserted into the formulation of the studied fuzzy multi-objective optimization problem by means of fuzzy coefficients in the objective function. Some numerical examples are analytically solved to illustrate the efficiency of the proposed approach.  相似文献   

18.
In this paper, a new methodology is presented to solve different versions of multi-objective system redundancy allocation problems with prioritized objectives. Multi-objective problems are often solved by modifying them into equivalent single objective problems using pre-defined weights or utility functions. Then, a multi-objective problem is solved similar to a single objective problem returning a single solution. These methods can be problematic because assigning appropriate numerical values (i.e., weights) to an objective function can be challenging for many practitioners. On the other hand, methods such as genetic algorithms and tabu search often yield numerous non-dominated Pareto optimal solutions, which makes the selection of one single best solution very difficult. In this research, a tabu search meta-heuristic approach is used to initially find the entire Pareto-optimal front, and then, Monte-Carlo simulation provides a decision maker with a pruned and prioritized set of Pareto-optimal solutions based on user-defined objective function preferences. The purpose of this study is to create a bridge between Pareto optimality and single solution approaches.  相似文献   

19.
While there have been many adaptations of some of the more popular meta-heuristics for continuous multi-objective optimisation problems, Tabu Search has received relatively little attention, despite its suitability and effectiveness on a number of real-world design optimisation problems. In this paper we present an adaptation of a single-objective Tabu Search algorithm for multiple objectives. Further, inspired by path relinking strategies common in discrete optimisation problems, we enhance our algorithm to allow it to handle problems with large numbers of design variables. This is achieved by a novel parameter selection strategy that, unlike a full parametric analysis, avoids the use of objective function evaluations, thus keeping the overall computational cost of the procedure to a minimum. We assess the performance of our two Tabu Search variants on a range of standard test functions and compare it to a leading multi-objective Genetic Algorithm, NSGA-II. The path relinking-inspired parameter selection scheme gives a clear performance improvement over the basic multi-objective Tabu Search adaptation and both variants perform comparably with the NSGA-II.  相似文献   

20.
Nowadays, a number of metaheuristics have been developed for efficiently solving multi-objective optimization problems. Estimation of distribution algorithms are a special class of metaheuristic that intensively apply probabilistic modeling and, as well as local search methods, are widely used to make the search more efficient. In this paper, we apply a Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm (HMOBEDA) in multi and many objective scenarios by modeling the joint probability of decision variables, objectives, and the configuration parameters of an embedded local search (LS). We analyze the benefits of the online configuration of LS parameters by comparing the proposed approach with LS off-line versions using instances of the multi-objective knapsack problem with two to five and eight objectives. HMOBEDA is also compared with five advanced evolutionary methods using the same instances. Results show that HMOBEDA outperforms the other approaches including those with off-line configuration. HMOBEDA not only provides the best value for hypervolume indicator and IGD metric in most of the cases, but it also computes a very diverse solutions set close to the estimated Pareto front.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号