首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Isomerization processes of azobenzene dyes dissolved in a glassy polymeric matrix or attached in glassy amorphous or liquid crystalline polymers to the backbone as side groups are induced by light. The isomerization process, in turn, causes the dye to reorient provided that polarized light is used: the long axis of the dye is oriented perpendicular to the polarization direction in the stationary case. Such a reorientation gives rise to strong modifications of the optical properties. This contribution is concerned with the analysis of the correlation between the nature of the azobenzene dyes, the isomerization, reorientation and modulations discussed above and with possible applications in the optical holographic storage. Considered are, in particular, dye/matrix combinations giving rise to nonlinear holographic responses, two photon holography, transient holographic modes applicable for holographic displays and the optical switching of other than optical properties.  相似文献   

2.
Discussion is presented on the use of the photoisomerization of azobenzene chromophore in the design andpreparation of novel functional materials. The two systems reviewed are azobenzene polymer-stabilized liquid crystals andazobenzene elastomers. In the first case, a polymer network containing azobenzene moieties is used to optically induce andstabilize a long-range liquid crystal orientation without the need of treating the surfaces of the substrates. This optical andrubbing-free approach was applied to nematic and ferroelectric liquid crystals. In the second case, an azobenzene side-chainliquid crystalline polymer is grafted onto a styrene-butadiene-styrene triblock copolymer to yield a photoactive thermoplasticelastomer. Coupled mechanical and optical effects make possible the formation of dimaction gratings that may be useful formechanically tunable optical devices.  相似文献   

3.
Summary.  The basic mechanism of optical information storage utilizing the azobenzene photoaddressable moiety will briefly be introduced. A synthetically flexible polyester matrix covalently integrating cyanoazobenzene in regularly spaced side chains is particularly well suited for holographic storage. Notable figures of merits of thin film materials of liquid crystalline polyesters are: response time to laser light in the order of ns, storage capacity of 5000 lines/mm, high permanent (more than eight years) diffraction efficiency in the order of 50% or higher, and erasability. The implications of the nature of the main chain on polyester morphology and on the permanency of the induced anisotropy are discussed. Arguments for the design and methods of preparation of other very different polymer scaffolds supporting the cyanoazobenzene are elucidated. Whereas oligopeptides invariably form amorphous materials, both copolymethacrylates and dendritic or hyperbranched polyesters provide some materials that exhibit liquid crystallinity. However, none of these other scaffolds offer materials that allow long-lasting anisotropy to be laser light induced. Received June 23, 2000. Accepted (revised) August 18, 2000  相似文献   

4.
Among the different methods used to prepare polymer dispersed liquid crystals (PDLCs), polymerization induced phase separation can be successfully exploited to obtain optical recording of high resolution holographic gratings and binary images in these materials. In this paper we report a new method that allows hidden images to be obtained in PDLCs that are not detectable by light in the visible range. The possibility of storing invisible images during the curing process will be described and discussed. The binary images obtained can be detected by illuminating them with low power UV radiation, thus opening the way to interesting applications in the field of optical storage of reserved information.  相似文献   

5.
Among the different methods used to prepare polymer dispersed liquid crystals (PDLCs), polymerization induced phase separation can be successfully exploited to obtain optical recording of high resolution holographic gratings and binary images in these materials. In this paper we report a new method that allows hidden images to be obtained in PDLCs that are not detectable by light in the visible range. The possibility of storing invisible images during the curing process will be described and discussed. The binary images obtained can be detected by illuminating them with low power UV radiation, thus opening the way to interesting applications in the field of optical storage of reserved information.  相似文献   

6.
The fundamental optical storage mechanism of the laser light eddressable azobenzene moiety is briefly introduced.A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenzene in regularlyspaced side chains. Thin films of these materials are particularly well suited for holographic storape. Notable figures of meritsof liquid crystalline polyesters are response time to blue-green laser light of the order of nanoseconds, storage capacityexpressed as 5000 lines/mm, and high, permanent (almost nine years) diffraction efficiency of the order of 50% or greater,and erasability, The implications of the main chain nature for polyester morphology and for the permanency of the inducedanisotropy are discussed, The design and methods of preparation of other significantly different polymer scaffolds supportingcyanoazobenzene are elaborated. Oligopeptides always result in amorphous materials, whereas copolymethacrylates anddendritic or hyperbranched polyesters provide some materials that exhibit liquid crystallinity. However, none of these scaffolds affords materials that result in permanent anisotropy when exposed to interfering laser light.  相似文献   

7.
Optical data storage has had a major impact on daily life since its introduction to the market in 1982. Compact discs (CDs), digital versatile discs (DVDs), and Blu-ray discs (BDs) are universal data-storage formats with the advantage that the reading and writing of the digital data does not require contact and is therefore wear-free. These formats allow convenient and fast data access, high transfer rates, and electricity-free data storage with low overall archiving costs. The driving force for development in this area is the constant need for increased data-storage capacity and transfer rate. The use of holographic principles for optical data storage is an elegant way to increase the storage capacity and the transfer rate, because by this technique the data can be stored in the volume of the storage material and, moreover, it can be optically processed in parallel. This Review describes the fundamental requirements for holographic data-storage materials and compares the general concepts for the materials used. An overview of the performance of current read-write devices shows how far holographic data storage has already been developed.  相似文献   

8.
Optically switchable liquid crystal photonic structures   总被引:1,自引:0,他引:1  
Photo-optic materials offer the possibility of light controlled photonic devices, intelligent and environmentally adaptive optical materials. One strategy for creating these materials is the combination of structure formation through holographic photopolymerization and the variable optical properties of liquid crystals. Holographically patterned, polymer stabilized liquid crystals (HPSLCs) have proven to be useful optical materials. By incorporating photo-optic, azobenzene-derived liquid crystal blends into such material systems, we have generated practical photoresponsive optical materials.  相似文献   

9.
A new approach to the synthesis of photoactive comb‐shaped homo‐ and copolyamides containing azobenzene, cinnamate, and coumarin side groups for photoalignment of liquid crystals was elaborated. Photooptical properties and photoorientational ability of these polymers with respect to liquid crystals were studied. It was shown that polarized UV irradiation of all spin‐coated polyamides leads to orientation of liquid crystalline molecules deposited on the polyamide thin films. The synthesized polymers containing cinnamate and coumarin side groups as well as azobenzene‐containing cyano‐ and nitro‐substituted polymers demonstrated good orientation ability in relation to liquid crystals displaying photoinduced planar orientation with high dichroism values within the range of 0.68–0.72. Contrary to the above‐mentioned polyamides, azobenzene‐containing fluorosubstituted polymers induced a homeotropic orientation of liquid crystals. It was shown that the synthesized photoactive polyamides can be considered as promising photoalignment materials for application in display technology, photonics, and other “smart” optical devices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4031–4041  相似文献   

10.
Recent progress in alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions has been reviewed by dividing the modulation methods into two types: phase transitions (order–disorder change) and change of liquid crystal directors (order–order change). First, photochemical phase transitions and alignment changes of liquid crystals in guest/host mixtures and polymers are summarized. Then, alignment control of liquid crystals by linearly polarized light and photoactive surface layers is discussed. Finally, recent applications of alignment change and photochemical phase transitions of liquid crystals in holographic technology and photomechanical effects are introduced. In addition, future possible applications for a variety of practical devices, such as display devices, optical switching and reversible optical image storage, are mentioned.  相似文献   

11.
This paper reports on the synthesis and the thermal and optical properties of photochromic low-molecular-weight compounds, especially with respect to the formation of holographic volume gratings in the pure materials and in binary blends with polystyrene. Its aim is to provide a basic understanding of the holographic response with regard to the molecular structure, and thus to show a way to obtain suitable rewritable materials with high sensitivity for holographic data storage. The photoactive low-molecular-weight compounds consist of a central core with three or four azobenzene-based arms attached through esterification. Four different cores were investigated that influence the glass transition temperature and the glass-forming properties. Additional structural variations were introduced by the polar terminal substituent at the azobenzene chromophore to fine-tune the optical properties and the holographic response. Films of the neat compounds were investigated in holographic experiments, especially with regard to the material sensitivity. In binary blends of the low-molecular-weight compounds with polystyrene, the influence of a polymer matrix on the behavior in holographic experiments was studied. The most promising material combination was also investigated at elevated temperatures, at which the holographic recording sensitivity is even higher.  相似文献   

12.
含偶氮苯光学活性侧基聚合物研究进展   总被引:11,自引:0,他引:11  
综述了含偶氮苯光学活性侧基聚合物近年来的发展概况 ,介绍了多种聚合体系的类型。由于偶氮苯光于活性侧基的存在 ,使得这些聚合物具有光致变色性、非线性光学活性、光学各向异性等光学性能 ,在光信息存储材料、非线性光学材料、液晶材料、光电子器件、生物分子活性光调控、纳米技术等诸多领域都有广泛的应用。  相似文献   

13.
Azobenzene side-chain liquid crystalline polyester structures suitable for permanent optical storage are described. The synthesis and characterization of the polyesters together with differential scanning calorimetry and X-ray investigations are discussed. Optical anisotropic investigations and holographic storage in one particular polyester are described in detail and polarized Fourier transform infrared spectroscopic data complementing the optical data are presented. Optical and atomic force microscope investigations point to a laser-induced aggregation as responsible for permanent optical storage.  相似文献   

14.
Discotic liquid crystals: from tailor-made synthesis to plastic electronics   总被引:2,自引:0,他引:2  
Most associate liquid crystals with their everyday use in laptop computers, mobile phones, digital cameras, and other electronic devices. However, in contrast to their rodlike (calamitic) counterparts, first described in 1907 by Vorl?nder, disklike (discotic, columnar) liquid crystals, which were discovered in 1977 by Chandrasekhar et al., offer further applications as a result of their orientation in the columnar mesophase, making them ideal candidates for molecular wires in various optical and electronic devices such as photocopiers, laser printers, photovoltaic cells, light-emitting diodes, field-effect transistors, and holographic data storage. Beginning with an overview of the various mesophases and characterization methods, this Review will focus on the major classes of columnar mesogens rather than presenting a library of columnar liquid crystals. Emphasis will be given to efficient synthetic procedures, and relevant mesomorphic and physical properties. Finally, some applications and perspectives in materials science and molecular electronics will be discussed.  相似文献   

15.
Polymer films with embedded liquid crystal inclusions (polymer-dispersed liquid crystals) are superb composites for addressable windows, flexible displays and optical storage. Their scattering behavior and electro-optic properties depend essentially on the shape and size of the liquid crystal inclusions, which are typically formed by phase separation from a multicomponent homogeneous mixture. Here, pulsed field gradient NMR is used to measure the self-diffusion coefficients of the liquid crystal and a photo-reactive monomer, which compose such a precursor mixture. The kinetics of holographic grating formation in this mixture can be predicted by inserting the NMR diffusion coefficient of the monomer and the polymerization rate in a reaction diffusion model. The ratio of diffusion rate over reaction rate is found to be in the limiting regime in which the kinetics of the grating formation is not sensitive to this parameter.  相似文献   

16.
Phototropic liquid crystals (PtLC) comprising one component are a new class of liquid crystals (LC) which due to the phenomenon of photochemical phase transition are of special interest, especially in view of their potential applications in photonic devices. So far, however, only a little attention has been paid to these materials. In this paper, we discuss holographic recording in chiral and linear single-component PtLCs from the family of 4-alkyl-4?-alkoxyazobenzene and we develop the one-dimensional mathematical model describing the formation of the diffraction grating. The grating formation process and its dynamics, resulting from the photoinduced isotropic-to-nematic phase transition, have been described by the mechanism that assumes the formation and growth of the liquid-crystalline domains of different sizes induced by the sinusoidally modulated Gaussian light intensity distribution. We show that the model is based on one parameter, that is the incubation time which can be easily obtained experimentally and which can be used for the fitting of the experimental data. Reporting new PtLCs materials and the model that describes the processes of holographic recording in these types of materials can be useful in the design of new phototropic LC materials and for optimisation of the experimental conditions.  相似文献   

17.
Liquid crystals derive their unusual properties and their broad range of applications from their unique spatial and orientational order giving rise to specific symmetries, to strong anisotropies with respect to macroscopical properties and to a strong coupling to external fields. We have studied for liquid crystalline polymers modes of inducing strong modifications of the anisotropic optical properties locally in solid films by light. A storage process is described in this contribution which is based on light-induced trans-cis-trans-isomerization reactions of azobenzene chromophores attached to a polymer backbone as side groups in liquid crystalline polymers. The chromophores are able to rotate in the glassy state if subjected to linearly polarized light: the azobenzene units approach a saturation orientation which is perpendicular to the polarization direction of the light. The contribution discusses the molecular mechanism of this process as well as possible applications.  相似文献   

18.
Photo-responsive cholesteric liquid crystals (CLCs) have attracted much attention in recent years due to their wide applications in filters,tunable optical lasers,dynamic display devices,etc.However,UV light is usually used as the external stimulus source,which is not environment-friendly enough.On the other hand,the mechanical properties of CLCs are not strong enough for these practical applications.Therefore,it still remains a challenge to endow the CLCs with visible light response and high mechanical properties at the same time.Herein,an axially chiral tetra-fluorinated binaphthyl azobenzene gelator (S-4F-AG) is synthesized.Upon 550 and 450 nm light irradiations,S-4F-AG exhibits excellent photo-switchable behaviors.Notably,the maximum content of cis-isomer and its half-life are as high as 35% and 89 h in acetonitrile,respectively.A self-supporting CLC physical gel with a storage modulus around 104 Pa can be obtained when 3wt% S-4F-AG and 12wt%binaphthyl azobenzene derivative (dopant 2) are co-doped into a nematic LC host P0616A.This CLC physical gel exhibits a temperature-driven blue,green,and red reflection colors reversibly.Importantly,such three primary RGB colors can also be realized by adjusting the exposure time of 550 nm green light.This work lays a solid foundation for the applications ranging from information storage to high-tech anticounterfeit.  相似文献   

19.
An optical and electric field-responsive self-assembled complex containing nitril azobenzene groups and 1,3,5-triazine-2,4-diamine was obtained and characterized. Both the azobenzene precursor and the complex form a liquid-crystalline phase in a certain temperature range. The transition temperature from crystalline phase to liquid-crystalline mesophase was obviously decreased in the complex by the self-assembling. The self-assembled liquid crystals revealed good response to both stimuli of light irradiation and electric field, and the induced molecular orientation could be held even after the removal of the stimuli. The structural and mechanical investigation proved that the formation of hydrogen bonds and assembly-induced molecular dipolar change contributed to the multiresponding action. This kind of self-assembled complex thus has potential applications in imaging and data storage.  相似文献   

20.
The light-induced modification of the optical properties of photochromic liquid crystalline (side-group) polymers (LCPs) containing azobenzene moieties was studied. Films of such polymers were irradiated with unpolarized and linearly polarized light. Unpolarized irradiation results in a modification of the order parameter, whereas the director orientation remains constant. The light-induced disturbance of the supramolecular order is strongly dependent on the structure of the polymer. A correlation with the enthalpic stability of the liquid crystalline phases is given. Linearly polarized irradiation causes a modification of the order parameter and a reorientation of the side-groups towards a direction perpendicular to the electric vector of the actinic light. This reorientation process is caused by an angular-dependent photoselection within the steady state of the photoisomerization of the azobenzene units. The amount and kinetic of the reorientation differ considerably as a function of certain structural features of the polymers, such as the content of photochromic moieties and the lengths of the spacer chains between the polymeric backbone and the rod-like moieties. It is shown that under certain circumstances the angular-dependent photoselection process may cause a reorientation of the non-photochromic moieties by a cooperative process. The result is a light-induced rotation of the optical axis of the LCP and thus an efficient modification of the birefringent and dichroic properties. This effect can be used in optical data storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号