首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Models of biological control have a long history of theoretical development that have focused on the interactions between a predator and a prey. Here we have extended the classical epidemic model to include a continuous and impulsive pest control strategies by releasing the infected pests bred in laboratory. For the continuous model, the results imply that the susceptible pest goes to extinct if the threshold condition R0 < 1. While R0 > 1, the positive equilibrium of continuous model is globally asymptotically stable. Similarly, the threshold condition which guarantees the global stability of the susceptible pest-eradication periodic solution is obtained for the model with impulsive control strategy. Consequently, based on the results obtained in this paper, the control strategies which maintain the pests below an acceptably low level are discussed by controlling the release rate and impulsive period. Finally, the biological implications of the results and the efficiency of two control strategies are also discussed.  相似文献   

2.
In this paper, we deal with the existence and asymptotic behavior of traveling waves for nonlocal diffusion systems with delayed monostable reaction terms. We obtain the existence of traveling wave front by using upper-lower solutions method and Schauder’s fixed point theorem for c > c1(τ) and using a limiting argument for c = c1(τ). Moreover, we find a priori asymptotic behavior of traveling waves with the help of Ikehara’s Theorem by constructing a Laplace transform representation of a solution. Especially, the delay can slow the minimal wave speed for ?2f(0, 0) > 0 and the delay is independent of the minimal wave speed for ?2f(0, 0) = 0.  相似文献   

3.
Let Xn denote the state of a device after n repairs. We assume that the time between two repairs is the time τ taken by a Wiener process {W(t), t ? 0}, starting from w0 and with drift μ < 0, to reach c  [0, w0). After the nth repair, the process takes on either the value Xn?1 + 1 or Xn?1 + 2. The probability that Xn = Xn?1 + j, for j = 1, 2, depends on whether τ ? t0 (a fixed constant) or τ > t0. The device is considered to be worn out when Xn ? k, where k  {1, 2, …}. This model is based on the ones proposed by Rishel (1991) [1] and Tseng and Peng (2007) [2]. We obtain an explicit expression for the mean lifetime of the device. Numerical methods are used to illustrate the analytical findings.  相似文献   

4.
In this paper we analyze delayed transition phenomena associated to extinction thresholds in a mean field model for hypercycles composed of three and four units, respectively. Hence, we extend a previous analysis carried out with the two-membered hypercycle [see Sardanyés J, Solé RV. Ghosts in the origins of life? Int J Bifurcation Chaos 2006;16(9), in press]. The models we analyze show that, after the tangent bifurcation, these hypercycles also leave a ghost in phase space. These ghosts, which actually conserve the dynamical properties of the coalesced coexistence fixed point, delay the flows before hypercycle extinction. In contrast with the two-component hypercycle, both ghosts show a plateau in the delay as ϕ  0, thus displacing the power-law dependence to higher values of ϕ, in which the scaling law is now given by τ  ϕβ, with β = −1/3 (where τ is the delay and ϕ = ϵ  ϵc, the parametric distance above the extinction bifurcation point). These results suggest that the presence of the ghost is a general property of hypercycles. Such ghosts actually cause a memory effect which might increase hypercycle survival chances in fluctuating environments.  相似文献   

5.
In this paper, we introduce a new type of closed sets in bitopological space (X, τ1, τ2), used it to construct new types of normality, and introduce new forms of continuous function between bitopological spaces. Finally, we proved that the our new normality properties are preserved under some types of continuous functions between bitopological spaces.  相似文献   

6.
For the case of solidification of a bottom cooled binary alloy, the magnetohydrodynamic stationary and oscillatory convective stability in the mushy layer is investigated analytically using normal mode linear stability analysis. In the limit of large Stefan number (St), a near–eutectic approximation with large far field temperature is considered in the present research. To ascertain the instability in the mushy layer, the strength of the superimposed magnetic field is so chosen that it corresponds to a given mush Hartmann number (Ham) of the problem. The results are presented for various values of mush Hartmann numbers in the range, 0 ≤ Ham ≤ 50. The critical Rayleigh number for stationary convection shows a linear relationship with increasing Ham. The magnetohydrodynamic effect imparts a stabilizing influence during stationary convection. In comparison to that of the stationary convective mode, the oscillatory mode appears to be critically susceptible at higher values of β (β = St/℘2 ϒ2, ℘ is the compositional ratio, ϒ = 1 + St/℘), and vice versa for lower β values. Analogous to the behavior for stationary convection, the magnetic field also offers a stabilizing effect in oscillatory convection and thus influences global stability of the mushy layer. Increasing magnetic strength shows reduction in the wavenumber and in the number of rolls formed in the mushy layer.  相似文献   

7.
In this paper, we used the concept of (L, M)-fuzzy remote neighborhood system to study and establish the convergence theory of molecular nets. Next, we introduce the Ti-axioms (i = ?1, 0, 1, 2) in (L, M)-fuzzy topological molecular lattices, and discuss some of their characterizations. Finally, we show that the Ti-axioms (i = ?1, 0, 1, 2) are preserved under homeomorphisms.  相似文献   

8.
For a two patches SIR model, it is shown that its dynamic behavior is determined by several quantities. We have shown that if R0 < 1, then the disease-free equilibrium is globally asymptotically stable, otherwise it is unstable. Some sufficient conditions for the local stability of boundary equilibria are obtained. Numerical simulations indicate that travel between patches can reduces oscillations in both patches; may enhances oscillations in both patches; or travel switches oscillations from one patch to another.  相似文献   

9.
A function which is homogeneous in x, y, z of degree n and satisfies Vxx + Vyy + Vzz = 0 is called a spherical harmonic. In polar coordinates, the spherical harmonics take the form rnfn, where fn is a spherical surface harmonic of degree n. On a sphere, fn satisfies ▵ fn + n(n + 1)fn = 0, where ▵ is the spherical Laplacian. Bounded spherical surface harmonics are well studied, but in certain instances, unbounded spherical surface harmonics may be of interest. For example, if X is a parameterization of a minimal surface and n is the corresponding unit normal, it is known that the support function, w = X · n, satisfies ▵w + 2w = 0 on a branched covering of a sphere with some points removed. While simple in form, the boundary value problem for the support function has a very rich solution set. We illustrate this by using spherical harmonics of degree one to construct a number of classical genus-zero minimal surfaces such as the catenoid, the helicoid, Enneper's surface, and Hennenberg's surface, and Riemann's family of singly periodic genus-one minimal surfaces.  相似文献   

10.
This communication deals with the unsteady boundary layer flow of a viscous fluid in porous medium started due to the impulsively stretching of the plane wall. The wall is assumed to be porous so that suction or injection is possible. Complete analytic solution which is uniformly valid for all the dimensionless times 0  τ < 0 in the whole spatial region 0  η < ∞ is obtained by a purely analytic technique, namely the homotopy analysis method. Results are discussed through graphs.  相似文献   

11.
Time-delay is an unavoidable phenomenon in active control systems. Measuring of the system states, processing of the measured signals, executing the control laws, conditioning and enforcing the control actions are the main reasons of time-delayed systems. This paper studies the vibration control of a horizontally suspended Jeffcott-rotor system having cubic and quadratic nonlinearities via time-delayed position-velocity controller. The intervals of the time-delays (τ1 and τ2) at which the system response is stable has been studied. The τ1  τ2 plane is constructed to illustrate the area at which the system solutions are stable. The influences of the controller gains on the stable-solutions area in τ1  τ2 plane are explored. The analysis revealed that the time-delay increases the vibration amplitudes and can destabilize the system solution in the case of negative position feedback control, while at positive position feedback control it improves the vibration suppression performance. The time-delays mechanism in stabilizing and destabilizing the dynamical systems is explained. Then, we proposed a simple and concrete method to determine the optimal value for time-delays that can improve the vibrations suppression efficiency. The acquired analytical results are confirmed numerically and the optimal working conditions of the system are concluded. Finally, a comparison with the papers that published previously is included.  相似文献   

12.
Let ut  uxx = h(t) in 0  x  π, t  0. Assume that u(0, t) = v(t), u(π, t) = 0, and u(x, 0) = g(t). The problem is: what extra data determine the three unknown functions {h, v, g} uniquely? This question is answered and an analytical method for recovery of the above three functions is proposed.  相似文献   

13.
We are concerned with a variation of the knapsack problem as well as of the knapsack sharing problem, where we are given a set of n items and a knapsack of a fixed capacity. As usual, each item is associated with its profit and weight, and the problem is to determine the subset of items to be packed into the knapsack. However, in the problem there are s players and the items are divided into s + 1 disjoint groups, Nk (k = 0, 1,  , s). The player k is concerned only with the items in N0  Nk, where N0 is the set of ‘common’ items, while Nk represents the set of his own items. The problem is to maximize the minimum of the profits of all the players. An algorithm is developed to solve this problem to optimality, and through a series of computational experiments, we evaluate the performance of the developed algorithm.  相似文献   

14.
Many works study the integrability of the Bianchi class A cosmologies with k = 1, where k is the ratio between the pressure and the energy density of the matter. Here we characterize the analytic integrability of the Bianchi class A cosmological models when 0  k < 1. We conclude that Bianchi types VI0, VII0, VIII and IX can exhibit chaos whereas Bianchi type I is not chaotic and Bianchi type II is at most partially chaotic.  相似文献   

15.
In this paper we demonstrate new approach that can help in calculation of electrostatic potential of a fractal (self-similar) cluster that is created by a system of charged particles. For this purpose we used the simplified model of a plane dendrite cluster [1] that is generated by a system of the concentric charged rings located in some horizontal plane (see Fig. 2). The radiuses and charges of the system of concentric rings satisfy correspondingly to relationships: rn = r0ξn and en = e0bn, where n determines the number of a current ring. The self-similar structure of the system considered allows to reduce the problem to consideration of the functional equation that similar to the conventional scaling equation. Its solution represents itself the sum of power-low terms of integer order and non-integer power-law term multiplied to a log-periodic function [5], [6]. The appearance of this term was confirmed numerically for internal region of the self-similar cluster (r0  r  rN−1), where r0, rN−1 determine the smallest and the largest radiuses of the limiting rings correspondingly. The results were obtained for homogeneously (b > 0) and heterogeneously (b < 0) charged rings. We expect that this approach allows to consider more complex self-similar structures with different geometries of charge distributions.  相似文献   

16.
Let Ay = f, A is a linear operator in a Hilbert space H, y  N(A)  {u : Au = 0}, R(A)  {h : h = Au, u  D(A)} is not closed, ∥fδ  f  δ. Given fδ, one wants to construct uδ such that limδ→0uδ  y = 0. Two versions of discrepancy principles for the DSM (dynamical systems method) for finding the stopping time and calculating the stable solution uδ to the original equation Ay = f are formulated and mathematically justified.  相似文献   

17.
For fixed positive integer k, let En denote the set of lattice paths using the steps (1, 1), (1,  1), and (k, 0) and running from (0, 0) to (n, 0) while remaining strictly above the x-axis elsewhere. We first prove bijectively that the total area of the regions bounded by the paths of En and the x-axis satisfies a four-term recurrence depending only on k. We then give both a bijective and a generating function argument proving that the total area under the paths of En equals the total number of lattice points on the x-axis hit by the unrestricted paths running from (0, 0) to (n  2, 0) and using the same step set as above.  相似文献   

18.
Duffing–Van der Pol equation with fifth nonlinear-restoring force and two external forcing terms is investigated. The threshold values of existence of chaotic motion are obtained under the periodic perturbation. By second-order averaging method and Melnikov method, we prove the criterion of existence of chaos in averaged system under quasi-periodic perturbation for ω2 = 1 + εσ, n = 1, 3, 5, and cannot prove the criterion of existence of chaos in second-order averaged system under quasi-periodic perturbation for ω2 = 1 + εσ, n = 2, 4, 6, 7, 8, 9, 10, where σ is not rational to ω1, but can show the occurrence of chaos in original system by numerical simulation. Numerical simulations including heteroclinic and homoclinic bifurcation surfaces, bifurcation diagrams, Lyapunov exponent, phase portraits and Poincaré map, not only show the consistence with the theoretical analysis but also exhibit the more new complex dynamical behaviors. We show that cascades of interlocking period-doubling and reverse period-doubling bifurcations from period-2 to -4 and -6 orbits, interleaving occurrence of chaotic behaviors and quasi-periodic orbits, transient chaos with a great abundance of period windows, symmetry-breaking of periodic orbits in chaotic regions, onset of chaos which occurs more than one, chaos suddenly disappearing to period orbits, interior crisis, strange non-chaotic attractor, non-attracting chaotic set and nice chaotic attractors. Our results show many dynamical behaviors and some of them are strictly departure from the behaviors of Duffing–Van der Pol equation with a cubic nonlinear-restoring force and one external forcing.  相似文献   

19.
In present paper, we analyze the dynamics of a single-block model on an inclined slope with Dieterich–Ruina friction law under the variation of two new introduced parameters: time delay Td and initial shear stress μ. It is assumed that this phenomenological model qualitatively simulates the motion along the infinite creeping slope. The introduction of time delay is proposed to mimic the memory effect of the sliding surface and it is generally considered as a function of history of sliding. On the other hand, periodic perturbation of initial shear stress emulates external triggering effect of long-distant earthquakes or some non-natural vibration source. The effects of variation of a single observed parameter, Td or μ, as well as their co-action, are estimated for three different sliding regimes: β < 1, β = 1 and β > 1, where β stands for the ratio of long-term to short-term stress changes. The results of standard local bifurcation analysis indicate the onset of complex dynamics for very low values of time delay. On the other side, numerical approach confirms an additional complexity that was not observed by local analysis, due to the possible effect of global bifurcations. The most complex dynamics is detected for β < 1, with a complete Ruelle–Takens–Newhouse route to chaos under the variation of Td, or the co-action of both parameters Td and μ. These results correspond well with the previous experimental observations on clay and siltstone with low clay fraction. In the same regime, the perturbation of only a single parameter, μ, renders the oscillatory motion of the block. Within the velocity-independent regime, β = 1, the inclusion and variation of Td generates a transition to equilibrium state, whereas the small oscillations of μ induce oscillatory motion with decreasing amplitude. The co-action of both parameters, in the same regime, causes the decrease of block’s velocity. As for β > 1, highly-frequent, limit-amplitude oscillations of initial stress give rise to oscillatory motion. Also for β > 1, in case of perturbing only the initial shear stress, with smaller amplitude, velocity of the block changes exponentially fast. If the time delay is introduced, besides the stress perturbation, within the same regime, the co-action of Td (Td < 0.1) and small oscillations of μ induce the onset of deterministic chaos.  相似文献   

20.
This paper aims to present complete analytic solution to the unsteady heat transfer flow of an incompressible viscous fluid over a permeable plane wall. The flow is started due to an impulsively stretching porous plate. Homotopy analysis method (HAM) has been used to get accurate and complete analytic solution. The solution is uniformly valid for all time τ  [0, ∞) throughout the spatial domain η  [0, ∞). The accuracy of the present results is shown by giving a comparison between the present results and the results already present in the literature. This comparison proves the validity and accuracy of our present results. Finally, the effects of different parameters on temperature distribution are discussed through graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号