首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
低He气压下Rb(5P3/2)激发态有效辐射率的计算与测量   总被引:1,自引:1,他引:0  
计算和测量了Rb-He混合蒸气中Rb(5P3/2)共振能级的有效辐射率,使用单模半导体激光器(泵浦激光)将Rb原子激发至5P3/2态,另一调谐到5P3/2→7S1/2的单模激光束(检测激光)与泵浦束反平行通过样品池,并在池的直径方向平行移动,通过对检测激光束的吸收测定了激发态原子密度及其空间分布.由于辐射陷获存在,有效辐射率是自然辐射率与透射因子(发射的光子在探测区域内没有被吸收的平均概率,它与吸收截面及激发态原子密度和空间分布有关)的乘积.5P3/2原子密度及其空间分布结合5P3/2←5S1/2跃迁线的碰撞增宽计算了透射因子,从而得到了不同He气压下,Rb D2线的有效辐射率.从5P3/2→5S1/2跃迁线强度I780的测量,得到的不同He气压下有效辐射率的比值与理论计算得到的比值相符.  相似文献   

2.
在Cs蒸气密度为1013?cm-3量级范围内,研究了6P3/2+6P3/2→6DJ+6S碰撞能量合并过程.利用单模半导体激光器共振激发6P3/2态,利用另一与泵浦激光束反向平行的单模激光束作为吸收线探测激发态原子密度及其空间分布,吸收线调至6P3/2→8S1/2跃迁,并可平行于泵浦激光束移动.由激发态原子密度和谱线的荧光强度比得到碰撞能量合并的截面.碰撞转移到6D5/2和6D3/2的截面分别是(4.1±1.8)×10-15和(2.2±1.0)×10-15?cm2.与其它实验结果进行了比较.  相似文献   

3.
应用激光吸收和荧光方法,测量了Cs(6P)态与N2碰撞的精细结构转移和碰撞猝灭截面。Cs原子被激光激发到6P3/2态,将与泵浦激光束反向平行的检测激光束调到6PJ→8S1/2的跃迁,测量了6PJ激发态的密度及空间分布,由此计算了6PJ→6S的有效辐射率。在T=337 K(蒸气压公式给出Cs密度N0=1.25×1012cm-3)和N2密度2×1016相似文献   

4.
本文研究了Cs(6P3/2) Cs(6P3/2) He→Cs(4FJ) Cs(6S1/2) He的碰撞能量转移过程.在温度为337~357 K,利用单模半导体激光器共振激发Cs原子至6P3/2态,利用另一与泵浦激光束反向平行激光束作为吸收线探测6P3/2态原子密度及其空间分布.缓冲气体增大了两个6P3/2原子间的能量转移,这可从测量由两个Cs(6P3/2)原子碰撞而被布居的4FJ态所发射的荧光得到证实.得到三体碰撞速率系数为(1.35±0.18)×10-27 cm6s-1,(2.22±0.21)×10-27 cm6s-1.  相似文献   

5.
激光激发Rb+H2系统形成RbH分子机理的实验研究   总被引:1,自引:1,他引:0  
在Rb-H2混合系统中用激光(泵浦激光)将基态Rb原子激发到Rb(5P3/2)能级,将调谐至5P3/2→7S1/2跃迁的另一激光束(检测激光)与泵浦激光反向平行通过样品池,并在池的直径方向平行移动,利用光学吸收法得到Rb(5P3/2)态的密度及其空间分布。由于辐射陷获存在,有效辐射率是自然辐射率与透射因子(发射的光子在探测区域内没有被吸收的平均概率,它与吸收截面及激发态原子密度和空间分布有关)的乘积。由5P3/2原子密度及其空间分布结合5P3/2←5S1/2跃迁线的碰撞增宽计算了透射因子。能量合并过程5P3/2 5P3/2→5S1/2 5D产生高位态5D原子,猝灭过程Rb(5P3/2) H2(v=0)→Rb(5S) H2(v=2)产生H2(v=2)态,H2(v=2)密度由Rb(5P3/2)与H2的碰撞猝灭截面得到。Rb(5D) H2和Rb(5P3/2) H2(v=2)发生碰撞反应可生成RbH分子,通过对不同H2密度时5D→5P3/2与5P3/2→5S1/2荧光强度比以及RbH分子X1Σ →A1Σ 跃迁线吸收光强的测量,首次得到了Rb(5D) H2→RbH H和Rb(5P3/2) H2(v=2)→RbH H的反应截面分别为4.02×10-17cm2和1.00×10-18cm2。实验表明,Rb(5P3/2) H2不直接生成RbH分子,而是通过二步反应产生的。  相似文献   

6.
Rb蒸气中的5PJ+5PJ′→5S+5DJ″碰撞能量合并   总被引:1,自引:0,他引:1  
研究了Rb(5PJ) Rb(5PJ′)→Rb(5S) Rb(5DJ″)的碰撞能量合并过程,一台单模半导体激光器共振激发Rb原子的5P1/2或5P3/2态,另一与泵浦激光束反向平行的单模激光束作为吸收线探测激发态原子密度及其空间分布,吸收线分别调至5P1/2→5D3/2和5P3/2→7S1/2跃迁,由激发态原子密度和谱线荧光比得到碰撞能量合并过程5PJ 5PJ′→5S 5DJ″的截面.两台激光器同时分别激发5P1/2和5P3/2态,通过对5DJ″→5PJ的荧光探测,得到5P3/2 5P1/2碰撞转移到5D5/2和5D3/2的截面分别为(1.12±0.50)×10-14和(1.01±0.45)×10-14cm2.  相似文献   

7.
利用一步激发的饱和吸收光谱技术测量了激发态Cs(6P3/2)态的原子密度.室温下的Cs-Ar混合蒸气被852 nm激光激发,在6S1/2→6P3/2跃迁线轮廓接近纯Doppler增宽线型、激光线宽远小于非均匀的Doppler线宽而与均匀Lorentz线宽相比的条件下,可以确定基态Cs原子中可能被激光吸收的具有速度分量υz的粒子数密度N(υz).在激光功率20μW至2.5 mW的范围内,测量了吸收系数,得到了6P3/2态的速度选择布居数密度.利用从Cs空心阴极灯发出的8S1/2→6P3/2窄谱线的吸收测量,也可以测得6P3/2态的原子密度,两种测量方法所得结果符合得很好.Cs-Ar碰撞的谱线增宽增加了有效泵浦率,有5%的基态原子被单模半导体激光器激发到6P3/2态.由测量不同6P3/2态原子密度时的共振852 nm荧光,也证实了饱和吸收测量激发态原子密度方法的可靠性.  相似文献   

8.
研究了Rb(5PJ) Rb(5PJ)→Rb(nlJ') Rb(5S)碰撞能量合并过程,利用单模半导体激光器分别共振激发Rb原子的5P1/2或5P3/2态,利用另一与泵浦激光束反向平行的单模激光束作为吸收线探测激发态原子密度及其空间分布,吸收线分别调至5P1/2→5D3/2和5P3/2→7S1/2跃迁.由激发态原子密度和谱线荧光比得到碰撞能量合并过程的截面,对5P3/2激发,碰撞转移得到5D5/2,5D3/2和7S1/2的截面分别是(1.32士0.59)×10-14,(1.18士0.53)×10-14和(3.21士1.44)×10-15cm2;对5P1/2激发,碰撞转移到5D5/2和5D3/2的截面分别是(6.57士2.96)×10-15和(5.90士2.66)×10-15cm2.与其他的实验结果进行了比较.  相似文献   

9.
研究了Rb(5PJ)+Rb(5PJ)→Rb(nlJ')+Rb(5S)碰撞能量合并过程,利用单模半导体激光器分别共振激发Rb原子的5P1/2或5P3/2态,利用另一与泵浦激光束反向平行的单模激光束作为吸收线探测激发态原子密度及其空间分布,吸收线分别调至5P1/2→5D3/2和5P3/2→7S1/2跃迁.由激发态原子密度和谱线荧光比得到碰撞能量合并过程的截面,对5P3/2激发,碰撞转移得到5D5/2,5D3/2和7S1/2的截面分别是(1.32士0.59)×10-14,(1.18士0.53)×10-14和(3.21士1.44)×10-15cm2;对5P1/2激发,碰撞转移到5D5/2和5D3/2的截面分别是(6.57士2.96)×10-15和(5.90士2.66)×10-15cm2.与其他的实验结果进行了比较.  相似文献   

10.
激发态CsHe(Ar)分子的光离解   总被引:3,自引:1,他引:2       下载免费PDF全文
研究Cs(62P)+He(Ar)+nhν→Cs(92D)+He(Ar)+(n-1)hν过程,激光频率调到Cs9D3/2→6P1/2跃迁谱线的蓝翼20~100cm-1,测量了精细结构谱线强度分支比I(9D3/2→6P3/2)/I(9D5/2→6P3/2)。实验表明,原子相互作用势和非绝热效应在离解动力学中起关键作用。  相似文献   

11.
利用He-Cd激光器的441.6 nm线光解Cs2分子, 使Cs(n2L)(nL=7P, 6D)态得到布居, 在Cs密度1到9×1015 cm-3范围内测量原子荧光对分子荧光强度比, 得到碰撞转移率系数对解离率之比分别为2.9×10-17和7.4×10-18 cm3. 测定Cs nLJ对nLJ'荧光分支比, 得到72P, 62D态精细结构解离率之比分别为0.53和0.43. 从远翼激发得到的精细结构转移截面与从其他激发过程得到的截面结果相符, 给出了碰撞转移到6D态外(即Cs(6D)+Cs(6S)→Cs(6D)以外的态)的截面为1.9×10-14 cm2.  相似文献   

12.
852.3 nm激光线共振激发Cs蒸气的荧光光谱   总被引:2,自引:2,他引:0  
研究了Cs蒸气被单模半导体激光器的852.3 nm线激发产生的荧光光谱。由Cs,Cs2的荧光及其强度确定了在受激Cs-Cs2系统中的若干碰撞和辐射过程。高位态原子线是由Cs(6P3/2)+ Cs(6P3/2)到Cs(6D,8S)的碰撞能量合并形成的,Cs2(B 1u)带则由Cs(6P)+Cs2(X 1Σ+g)碰撞转移产生。通过激发转移、能量碰撞合并和Cs2-Cs碰撞传能研究了6 2P原子的精细结构混合,得到了6P3/2→6P1/2碰撞转移速率系数是(5.2±2.1)×10-11 cm3·s-1,给出了过程Cs2(B 1∏u)+Cs(6S)→Cs2(X 1Σ+g)+Cs(6P1/2)的速率系数是(1.0±0.4)×10-9 cm3·s-1。  相似文献   

13.
用光学-光学双共振光谱技术研究Cs蒸气中的共振交换碰撞   总被引:1,自引:1,他引:0  
利用窄带半导体激光器泵浦所有具有相同z分量速度的基态Cs原子至激发态,研究了Cs(6P3/2, v) +Cs(6S1/2, v′)→Cs(6S1/2, v) +Cs(6P3/2, v′)的共振交换碰撞过程。与泵浦光反向平行的另一单模激光器激发6P3/2至8S1/2态,以检测6P3/2态原子的速度分布,确定激发态原子的热能化效应。通过测量8S1/2→6P1/2荧光的尖峰强度与相应的多普勒背景的强度比,得到共振交换碰撞速率系数为k=9.62×10-7 cm3·s-1。证明了在纯碱金属蒸气中,由共振交换机制产生的热能化效应的大小比由速度改变碰撞引起的大3个数量级。  相似文献   

14.
在铯原子气室中采用偏振方向相互垂直且同向传播的线偏泵浦光和探测光,研究了铯原子D2线的泵浦探测光谱。由于在6 S1/2 F=3 – 6 P3/2 F’=2 超精细跃迁中存在多个L型塞曼子能级结构,从而产生了电磁诱导透明导致的吸收减弱;而在6 S1/2 F=4 – 6 P3/2 F’=5 超精细跃迁中则观测到了电磁诱导吸收。通过改变泵浦光的失谐量,在电磁诱导透明形成的吸收减弱凹陷和电磁诱导吸收产生的吸收增强峰内部均观察到了反常的吸收信号反转。  相似文献   

15.
测量了K- Cs混合蒸气中碰撞能量合并过程K(4P) +Cs(5D)→Cs(6S) +K(4D ,6S)速率系数,测量是相对于已知速率系数的过程[即Cs(6P) +Cs(5D)→Cs(6S) +Cs(7DJ) ]进行的。利用激光光解K2 和Cs2分子,得到Cs(6P ,5D)和K(4P)态原子,探测直接由光解离产生的原子发射的与由碰撞转移而布居的原子激发态发射的荧光的相对强度,结合Cs(6P)和K(4P)态的有效寿命,得到异核碰撞能量合并速率系数分别为2. 6×10 -9和3 .6×10 -9cm3 ·s-1。讨论了其他过程对速率系数的影响。  相似文献   

16.
We have observed several new spectral features in the fluorescence of cesium atoms implanted in the hcp phase of solid helium following laser excitation to the 62P states. Based on calculations of the emission spectra using semiempirical Cs-He pair potentials the newly discovered lines can be assigned to the decay of specific Cs*Hen exciplexes: an apple-shaped Cs(APi3/2)He2 and a dumbbell-shaped Cs(APi1/2)Hen exciplex with a well-defined number n of bound helium atoms. While the former has been observed in other environments, it was commonly believed that exciplexes with n>2 might not exist. The calculations suggest Cs(APi1/2)He7 to be the most probable candidate for that exciplex, in which the helium atoms are arranged on a ring around the waist of the dumbbell-shaped electronic density distribution of the cesium atom.  相似文献   

17.
在9×1014~2.1×1015cm-3 Cs密度范围内,利用脉冲激光双光子激发Cs(6S1/2)到Cs(6D5/2)态,使用原子荧光光谱方法,通过三能级模型的速率方程分析,由对直接荧光和转移荧光的时间积分强度的测量,得到6D5/2→6D3/2精细结构转移截面为(2.1±0.4)×10-14cm2,而6D3/2态向6D以外态的转移截面为(1.6±0.4)×10-14cm2,它应是过程Cs(6 D3/2)+Cs(6S)→Cs(6P)+Cs(6P),6D3/2→7P3/2和6D3/2→7 P1/2碰撞转移截面之和.第二个实验可以得到6 D3/2→7P3/2和6D3/2→7 P1/2的碰撞转移截面.在1×1012~6×1012cm-3的低密度Cs蒸气中,激光双光子激发6S至6D3/2或6D5/2态,测量6DJ→6PJ'与7PJ"→6S1/2的时间积分荧光强度比,得到6D3/2→7P1/2与6D5/2→7R3/2的碰撞转移截面分别为(7.6±2.4)×10-15cm2与(1.6±0.5)×10-15cm2.由此得到碰撞能量合并的逆过程即[Cs(6D3/2)+Cs(6S1/2)→Cs(6P)+Cs(6P)]的转移截面为(1.3±0.4)×10-14cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号