首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
A comparative study of the excitation of luminescence by VUV radiation as well as of thermally and photostimulated luminescence has been carried out for CaSO4:Tb3+ and CaSO4:Gd3+ phosphors, where Na+ or F ions are used for charge compensation. The distinction in hole processes for the phosphors with Na+ or F compensators is determined by the differing thermal stability of the holes localized at/near Tb3+Na+ and Gd3+Na+ (up to 100–160 K) or at/near Tb3+F V Ca and Gd3+F V Ca centers involving also a cation vacancy (up to 400–550 K). Tunnel luminescence in the pairs of localized electrons and holes nearby Tb3+ or Gd3+ has been detected. The mechanisms of electron-hole, hole-electron and tunnel recombination luminescence as well as a subsequent released energy transfer to RE3+ ions are considered.  相似文献   

2.
Solid samples of polycrystalline corundum α-Al2O3 activated by triply-charged rare-earth ions RE3+ (R=Eu3+, Er3+, Pr3+) were synthesized by the sol-gel technology. Characteristic narrow-line optical absorption and luminescence spectra produced by intraconfigurational 4f-4f transitions in RE3+ ions have been measured. RE3+ ions have been established to form one dominant type of optical centers in the corundum matrix, and the energy diagram of Eu3+ and Er3+ Stark levels in corundum has been determined. Fiz. Tverd. Tela (St. Petersburg) 40, 1442–1449 (August 1998)  相似文献   

3.
Ultraviolet and visible upconversion emissions in Tb3+/Yb3+ co-doped YF3–BaF2–Ba(PO3)2 glasses were observed under 980-nm laser diode excitation. The dependence of the emission intensities of Tb3+ on the pump power reveals that two-photon processes account for blue cooperative emission of Yb3+ at 476 nm and green upconversion emission of Tb3+ at 543 nm, and three-photon processes for ultraviolet emission of Tb3+ in the wavelength range of 379–435 nm. The effects of Tb3+ concentration on the emission intensity and the lifetime of Tb3+ and Yb3+ are investigated in detail. It is found that the cooperative energy transfer from a pair of excited Yb3+ ions to a ground Tb3+ ion is responsible for the appearance of blue and green upconversion emissions due to the 5D47F J (J=6,5,4,3) transitions of Tb3+, and the resonance energy transfer from Yb3+ to Tb3+ accounts for the population on the 5D3,5G6 level and ultraviolet upconversion emission.  相似文献   

4.
Calcium lanthanide oxyborate doped with rare-earth ions LnCa4O(BO3)3:RE3+ (LnCOB:RE, Ln=Y, La, Gd, RE=Eu, Tb, Dy, Ce) was synthesized by the method of solid-state reaction at high temperature. Their fluorescent spectra were measured from vacuum ultraviolet (VUV) to visible region at room temperature. Their excitation spectra all have a broadband center at about 188 nm, which is ascribed to host absorption. Using Dorenbos’ and Jφrgensen's work [P. Dorenbos, J. Lumin. 91 (2000) 91, R. Resfeld, C.K. Jφrgensen, Lasers and Excite States of Rare Earth [M], Springer, Berlin, 1977, p. 45], the position of the lowest 5d levels E(Ln,A) and charge transfer band Ect were calculated and compared with their excitation spectra.Eu3+ and Tb3+ ions doped into LnCOB show efficient luminescence under VUV and UV irradiation. In this system, Ce3+ ions do not show efficient luminescence and quench the luminescence of Tb3+ ions when Tb3+ and Ce3+ ions are co-doped into LnCOB. GdCOB doped with Dy3+ shows yellowish white light under irradiation of 254 nm light for the reason that Gd3+ ions transfer the energy from itself to Dy3+. Because of the existence of Gd3+, the samples of GdCOB:RE3+ show higher excitation efficiency than LaCOB:RE3+ and YCOB:RE3+, around 188 nm, which indicates that the Gd3+ ions have an effect on the host absorption and can transfer the excitation energy to the luminescent center such as Tb3+, Dy3+ and Eu3+.  相似文献   

5.
Five Na2SO4:RE3+ phosphors activated with rare-earth (RE) ions (RE3+=Ce3+, Sm3+, Tb3+, Dy3+ and Tm3+) were synthesized by heating natural thenardite Na2SO4 from Ai-Ding Salt Lake, Xinjiang, China with small amounts of rare-earth fluorides, CeF3, SmF3, TbF3, DyF3 and TmF3, at 920 °C in air. The photoluminescence (PL) and optical excitation spectra of the obtained phosphors were measured at 300 and 10 K. In the PL spectrum of Na2SO4:Ce3+ at 300 K, two overlapping bands with peaks at 335 and 356 nm due to Ce3+ were first observed. Narrow bands observed in PL and excitation spectra of Na2SO4:RE3+ (RE3+=Sm3+, Tb3+, Dy3+ and Tm3+) phosphors were well identified with the electronic transitions within the 4fn (n=5, 8, 9 and 12) configurations of RE3+. The existence of excitation bands with high luminescence efficiency at wavelengths shorter than 230 nm is characteristic of Na2SO4:RE3+ (RE3+=Sm3+, Tb3+, Dy3+ and Tm3+) phosphors. The obtained results suggest that these phosphors are unfavorable as the phosphor for usual fluorescence tubes, i.e., mercury discharge tubes, but may be favorable as the phosphor for UV-LED fluorescent tubes and as cathodoluminescence, X-ray luminescence and thermoluminescence phosphors.  相似文献   

6.
The paper contains results of studies of repeated thermoluminescence of yttrium-aluminum garnet (YAG) crystals (Y3−xLnxAl5O12, x=0, 2) activated by rare earth ions (Pr3+, Nd3+, Tb3+, Dy3+, Ho3+, Er3+) previously exposed to60Co γ-radiation at 77 K and subjected to many cooling-heating cycles. A possible mechanism of repeated thermoluminescence is considered from the viewpoint of a dynamic evolutionary approach. The thermal conductivity of YAG-TR3+ crystals (TR3+: Gd3+, Tb3+, Dy3+, Er3+, Tm3+, and Lu3+) is studied to establish its relation with repeated thermoluminescence. Presented at the National Conference on Molecular Spectroscopy, Samarkand (Uzbekistan), September 25–27, 1996. Samarkand State University, 15, University Blvd., 703004, Samarkand, Republic of Uzbekistan. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 1, pp. 137–140, January–February, 1998.  相似文献   

7.
Judd–Ofelt parameters (Ω2 = 5.09∙10–20, Ω4 = 0.92∙10–20, and Ω6 = 0.63∙10–20 cm2) and oscillator strengths of fundamental optical transitions involved in lasing at wavelength 1.54 μm have been calculated for borosilicophosphate glass co-activated with Er3+ and Tb3+ ions based on experimental luminescence and absorption spectra and refractive indices. The results were used to determine the emission (6∙10–23 cm2) and absorption (5∙10–21 cm2) cross sections for λ = 1.54 μm and the gain cross section as a function of inverse population levels.  相似文献   

8.
The superionic conductivity and dielectric response of heavily doped fluorite-structured Ba1−xRxF2+x (R=La, Pr, Nd, Gd, Tb, Y, Sc; x=0.005–0.45) crystals are reported. The highest ionic conductivity is found for R=Sc and x=0.1. Upon ScF3 doping, small Sc3+ ions rearrange their surroundings, create excessive fluoride interstitial ions and bring about a high ionic conductivity. For each dopant, the concentration dependence of the ionic conductivity is non-linear. A monotonous concentration dependence of the ionic conductivity is found only for La3+ doping. Upon doping with Nd3+, Gd3+, Tb3+, Y3+ and Sc3+ ions, a conductivity maximum is observed at x=0.1–0.2. Upon Pr3+ doping, this maximum is split. The influence of defect clustering on the concentration dependence of the conductivity is discussed. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

9.
The triplet-triplet (T-T) absorption spectra and the T-T absorption decay kinetics are measured for solutions of 9-anthracenecarboxylic acid (ACA) and its complexes with metal ions (Cd3+ and Ln3+=Y3+, La3+, Ce3+, Eu3+, Gd3+, and Tb3+) in dimethylsulfoxide (DMSO) by the methods of flashlamp and laser pulse photolysis. The rate constants k T of intracomplex quenching of the triplet state are measured for ACA complexes with ions Gd3+, Ce3+, Tb3+, and Eu3+. Larger values of k T in complexes of ACA with paramagnetic ions Ce3+, Tb3+, and Eu3+, which have low-lying energy levels, compared to the values of k T for complexes with other ligands (pyrene-3-sulfonate, pyrene-1,3,6,8-tetrasulfonate, and benzo[ghi]perylene-1,2-dicarboxylate) were explained by the lower energy of the triplet state of ACA (14400 cm?1). For a complex with a paramagnetic ion Gd3+, which has no low-lying energy levels, the value of k T is close to that measured by us earlier for the inner-sphere complex of pyrene-1,3,6,8-tetrasulfonate with the same ion. These results confirm our earlier assumption about the inner-sphere complexing of ACA with Ln3+ ions in DMSO.  相似文献   

10.
Spectroscopic properties and energy transfer (ET) in Ga2O3-GeO2-Bi2O3-Na2O (GGBN, glass doped with Er3+ and rare earths (RE3+; RE3+=Ce3+, Tb3+) have been investigated. Intense 1.53-μm emission with the peak emission cross-section achieved to 7.58×10−21 cm2 from Er3+-doped GGBN glass has been obtained upon excitation at 980 nm. Effects of RE3+ (RE3+=Ce3+, Tb3+) codoping on the optical properties of Er3+-doped GGBN glass have been investigated and the possible ET mechanisms involved have also been discussed. Significant enhancement of the 1.53 μm emission intensity and decrease of upconversion (UC) fluorescence with increasing Ce3+ concentration have been observed. The incorporation of Tb3+ into Er3+-doped GGBN glass could significantly decrease the UC emission intensity, but meanwhile decrease the 1.53 μm emission intensity due to the ET from Er3+:4I13/2 to Tb3+:7F2. The results indicate that the incorporation of Ce3+ into Er3+-doped GGBN glass can effectively improve 1.53-μm and lower UC luminescence, which makes GGBN glass more attractive for use in C-band optical fiber amplifiers.  相似文献   

11.
We investigate the luminescent properties of potassium wolframylphosphate glasses doped with Eu3+, Tb3+, and Dy3+ ions whose luminescence is excited by donor-acceptor interaction between the active WO 2 2+ and Ln3+ ions, as well as the migration of energy in the subsystems of each type of the active ions. Comparison of the obtained data with the results of investigation of the spectroscopic properties of Ln3+ in uranylphosphate materials shows that a sufficiently high degree of the ionicity of bonds of Ln3+ with the atoms of its first coordination sphere is preserved in wolframylphosphate matrices. We show that three stages of the decomposition of electron excitations are typical of the WO 2 2+ ions in wolframylphosphate glasses doped with Ln3+ and two stages in nonactivated glasses. The electron excitation energy transfer in the WO 2 2+ −Ln3+ system occurs due to induction-resonance interaction. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 5, pp. 620–625, September–October, 1997.  相似文献   

12.
In the present paper, we investigate the near-infrared (NIR) luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate (LBG) glasses under visible and ultraviolet light excitation. The results indicate that NIR quantum cutting occurs through cooperative energy transfer from Tb3+ to Yb3+ ions when only 4f 8 levels of Tb3+ ions are excited in the wavelength region of 300–490 nm. The highest quantum efficiency under the excitation 5 D 4 level of Tb3+ at 484 nm is 146%. Ultraviolet excitation that populates the charge transfer band (CTB) of Yb3+ near 270 nm does not result in quantum cutting as the fast nonradiative decay from CTB to 2 F 5/2 level dominates. These materials are expected to be used as a converting layer for silicon solar cells to enhance their efficiency by splitting each high-energy photon into two NIR photons.  相似文献   

13.
The effect of temperature on the spectral luminescence characteristics of PbWO4:Tb3+ crystals with synchrotron and laser excitation is studied. If PbWO4:Tb3+ is excited by synchrotron radiation with λ = 88 nm at 300 K, a faint recombination luminescence of the impurity terbium is observed against the matrix luminescence. When the temperature is reduced to 8 K, the luminescence intensity of PbWO4:Tb3+ increases by roughly an order of magnitude and the characteristic luminescence of the unactivated crystal is observed. Excitation of PbWO4:Tb3+ by a nitrogen laser at 300 K leads to the appearance of emission from Tb3+ ions. At 90 K, a faint matrix luminescence is observed in addition to the activator emission. The formation of the luminescence excitation spectra for wavelengths of 60–320 nm is analyzed and the nature of the emission bands is discussed.  相似文献   

14.
Lutetium borates and phosphates doped with RE3+ ions are perspective scintillators. In the paper, the results of the luminescence spectroscopy of LuPO4 and LuBO3 doped with Pr3+, Ce3+, Tb3+ and Eu3+ under synchrotron radiation excitation are presented. The processes of the energy transfer from the host lattice to the luminescence centers are considered. The creation of excitons at the edge of fundamental absorption region is shown. The bandgap values for lutetium borate and phosphate were estimated.  相似文献   

15.
The thermo-luminescence (TL) of rare earth ions RE3+ (RE=Ln, excluding Pm, Eu and Lu) co-doped phosphors CaGa2S4:Eu2+, RE3+ was studied between room temperature and 300 °C, and 3D thermo-luminescence of the phosphors were measured from room temperature to 400 °C. The basic material CaGa2S4:Eu2+, showed at least two bands in the TL glow curve. Changing the auxiliary activator RE3+ (rare earth ion), intensities and the positions of the TL glow curve peaks were affected significantly. For the phosphors with long afterglow, auxiliary activator such as Ce3+, Pr3+, Gd3+, Tb3+, Ho3+, or Y3+ created some new defects in these compounds at lower trap levels and enhanced their TL intensities. The Nd3+ or Er3+ auxiliary activator only enhanced TL intensities to a low extent, so these two phosphors have short persistent luminescence at room temperature. TL intensities of La3+, Sm3+, Tm3+ or Yb3+ co-doped phosphors were suppressed greatly and no afterglow was shown. The relationship between auxiliary activators and corresponding thermo-luminescence curves of phosphors CaGa2S4:Eu2+, RE3+ are discussed in detail. According to our results, suitable activation energy and enough high corresponding trap density are necessary for the phosphor with long afterglow.  相似文献   

16.
Bi3+- and RE3+-co-doped (Y,Gd)BO3 phosphors were prepared and their luminescent properties under vacuum ultraviolet (VUV)/UV excitation were investigated. Strong red emission for (Y,Gd)BO3:Bi3+,Eu3+ and strong green emission for (Y,Gd)BO3:Bi3+,Tb3+ are observed under VUV excitation from 147 to 200 nm with a much broader excitation region than that of single Eu3+-doped or Tb3+-doped (Y,Gd)BO3 phosphor. Strong emissions are also observed under UV excitation around 265 nm where as nearly no luminescence is observed for single Eu3+-doped or Tb3+-doped (Y,Gd)BO3. The luminescence enhancement of Bi3+- and RE3+-co-doped (Y,Gd)BO3 phosphors is due to energy transfer from Bi3+ ion to Eu3+ or Tb3+ ion not only in the VUV region but also in the UV region. Besides, host sensitization competition between Bi3+ and Eu3+ or Tb3+ is also observed. The investigated phosphors may be preferable for devices with a VUV light 147-200 nm as an excitation source such as PDP or mercury-free fluorescent lamp.  相似文献   

17.
For the first time the exchange interaction between copper and non-Kramers Tb3+ ions was studied by means of electron paramagnetic resonance (EPR). Features of the manifestation of this interaction in the EPR spectra of dimer fragments Cu–Tb and pentanuclear fragments Cu–Tb–Cu–Tb–Cu are analyzed. The possibility to determine the sign and value of this interaction from EPR spectra for the case when the lowest states of Tb3+ are the states |0〉, | ± 1〉 is shown. The exchange interaction between copper and trivalent terbium ions in the studied pentanuclear complex is ferromagnetic. Authors' address: Violeta K. Voronkova, Kazan Physical-Technical Institute, Russian Academy of Sciences, Sibirsky trakt 10/7, Kazan 420029, Russian Federation  相似文献   

18.
The spectroscopic properties in UV-excitable range for the phosphors of Sr3La2(BO3)4:RE3+ (RE3+=Eu3+, Ce3+, Tb3+) were investigated. The phosphors were synthesized by conventional solid-state reactions. The photoluminescence (PL) spectra and commission international de I'Eclairage (CIE) coordinates of Sr3La2(BO3)4:RE3+ were investigated. The f-d transitions of Eu3+, Ce3+ and Tb3+ in the host lattices are assumed and corroborated. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Sr3La2(BO3)4:Eu3+ is 611 nm, and Sr3La2(BO3)4:Ce3+ shows dominating emission peak at 425 nm, while Sr3La2(BO3)4:Tb3+ displays green emission at 487, 542, 582 and 620 nm. These phosphors were prepared by simple solid-state reaction at 1000 °C. There are lower reactive temperature and more convenient than commercial phosphors. The Sr3La2(BO3)4:Tb3+ applied to cold cathode fluorescent lamp was found to emit green light and have a major peak wavelength at around 542 nm. These phosphors may provide a new kind of luminescent materials under ultraviolet excitation.  相似文献   

19.
The processes of photon multiplication in insulators have been considered. The luminescence of Tb3+ ions (5 D 37 F J , 5 D 47 F J transitions) upon intracenter excitation, the optical excitation of oxyanions, or the formation of separated electrons and holes has been studied for CaSO4 doped with Tb3+ and Na+ ions at 6–9 K. An increase in Tb3+ concentration from 0.2 to 4 at % and transition from single Tb3+-Na+ states to centers that contain two or three terbium ions leads to the redistribution of the luminescence intensities in favor of the 5 D 47 F J transitions and increase in their efficiency due to the possibility of the cooperative 5 D 35 D 4 and 7 F 67 F J transitions and the 4f 75d 15 D 3 and 7 F 65 D 4 transitions in the two- and three-terbium centers. Based on the example of MgO single crystals with highly mobile excitons, holes, and electrons, the migration of free excitons and holes toward Cr3+ ions in the crystal bulk and their exit from the bulk to the surface have been revealed at 9 K. Surface losses limit the luminescence quantum yield of MgO:Cr3+, CaSO4:Tb3+, and many other materials.  相似文献   

20.
This work deals with the low-temperature preparation of optically active silica-based materials. Tb3+-doped silica monolithic gels were elaborated at 40 °C. Tb3+–SSA-doped SiO2–TiO2 thin films were deposited by an original sol–gel approach, the aerosol–gel process, and heat-treated at 150 °C. Organic complexation of terbium ions was used to improve the active properties of doped silica gels and thin-film samples. Spectroscopic characterisations are reported for these samples. Photoluminescence increase by a factor two was observed for complexation by sulphosalicylic acid. Received: 16 May 2001 / Revised version: 31 August 2001 / Published online: 23 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号