首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Four new Cu(II) complexes {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(7)H(5)O(2))(2)·6H(2)O 1, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(5)H(6)O(4))·8H(2)O 2, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(C(5)H(6)O(4))(2)·16H(2)O 3 and {[Cu(6)(bpy)(6)(OH)(6)(H(2)O)(2)]}(C(8)H(7)O(2))(6)·12H(2)O 4 were synthesized (bpy = 2,2'-bipyridine, H(2)(C(5)H(6)O(4)) = glutaric acid, H(C(7)H(5)O(2)) = benzoic acid, H(C(8)H(7)O(2)) = phenyl acetic acid). The building units in 1-3 are the tetranuclear [Cu(4)(bpy)(4)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(2)](4+) complex cations, and in 4 the hexanuclear [Cu(6)(bpy)(6)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(4)](6+) complex cations, respectively. The tetra- and hexanuclear cluster cores [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] and [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] in the complex cations could be viewed as from step-like di- and trimerization of the well-known hydroxo-bridged dinuclear [Cu(2)(μ(2)-OH)(2)] entities via the out-of-plane Cu-O(H) bonds. The complex cations are supramolecularly assembled into (4,4) topological networks via intercationic ππ stacking interactions. The counteranions and lattice H(2)O molecules are sandwiched between the 2D cationic networks to form hydrogen-bonded networks in 1-3, while the phenyl acetate anions and the lattice H(2)O molecules generate 3D hydrogen-bonded anionic framework to interpenetrate with the (4,4) topological cationic networks with the hexanuclear complex cations in the channels. The ferromagnetic coupling between Cu(II) ions in the [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] cores of 1-3 is significantly stronger via equatorial-equatorial OH(-) bridges than via equatorial-apical ones. The outer and the central [Cu(2)(OH)(2)] unit within the [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] cluster cores in 4 exhibit weak ferromagnetic and antiferromagnetic interactions, respectively. Results about i.r. spectra, thermal and elemental analyses are presented.  相似文献   

2.
Two new 1D coordination polymers, [Cu(3)(μ(3)-OH)(ppk)(3)(μ-N(CN)(2))(OAc)](n) (1) and {[Cu(4)(pdmH)(2)(pdm)(2)(μ(2)-OH)(H(2)O)]·ClO(4)}(n) (2) based on two different blocking ligands phenyl-2-pyridylketoxime (ppk) and pyridine-2,6-dimethanol (pdmH(2)) have been synthesized and were characterized by X-ray single crystal structural analysis. In compound 1, the hydroxido-bridged trinuclear core, {Cu(3)(μ(3)-OH)(ppk)(3)(OAc)}, acts as secondary building units and are connected by the N(CN)(2)(-) anions resulting in a one dimensional (1D) coordination polymer. The 1D coordination chains undergo π-π interactions giving rise to a 3D supramolecular framework. In compound 2, tetrameric [Cu(4)(pdmH)(2)(pdm)(2)(H(2)O)](2+) cores are linked via hydroxido groups forming a zigzag 1D coordination chain where non-coordinated ClO(4)(-) ions are intercalated between the chains. Variable temperature magnetic susceptibility study of suggests that Cu(II) ions in the trinuclear Cu(3)(μ(3)-OH) cores are antiferromagnetically coupled with J = -459.7 cm(-1) and g = 2.11 and the trinuclear cores are further weakly coupled antiferromagnetically (zj' = -5.25 cm(-1)) through the N(CN)(2)(-) bridging ligand. Investigation of the magnetic properties of reveals that Cu(II) ions are coupled antiferromagnetically in the tetranuclear core with J = -27.1 cm(-1) and g = 2.17; the Cu(II)(4) building units are further coupled antiferromagnetically with zj' = -9.65 cm(-1). The experimental magnetic behaviours of 1 and 2 are correlated by first principle DFT calculations which provide a qualitative understanding of the origin of antiferromagnetic interactions in both cases.  相似文献   

3.
Reactions of CuX (X = Br(-), I(-) or CN(-)) with various types of 2,2'-dipyridylamine (dpa) derivatives have been performed via a hydrothermal-solvothermal method and the products have been structurally characterized by X-ray crystallography. Four ligands with different coordination motifs were employed in the reactions, including angular N,N,N',N'-tetra(2-pyridyl)-2,6-pyridinediamine (tppda); linear N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine (tppa) and N,N,N',N'-tetra(2-pyridyl)biphenyl-4,4'-diamine (tpbpa); and star-shaped tris-[4-(2,2'-dipyridylamino)-phenyl]amine (tdpa), which yielded eight copper(I) complexes exhibiting different stoichiometries of Cu-dpa and variable coordination modes of dpa. The compound [Cu(2)(tppda)(μ-I)(2)](n) (1) forms a one dimensional (1D) coordination polymer exclusively through double μ(2)-I bridges, which arranges to two dimensional (2D) metal-organic frameworks (MOFs) via the face-to-face π···π stacking interactions from pyridyl rings. The compound [Cu(6)(tppa)(μ(3)-Br)(6)](n) (2) forms a 2D network linked through multiple μ(3)-Br bridges. The compound [Cu(2)(tppa)(μ-CN)(2)](n) (3) is also a 2D MOF containing 1D (CuCN)(n) chains. The compounds [Cu(tpbpa)Br](n) (4) and [Cu(4)(tpbpa)(2)(μ-I)(4)](n) (5) display two different 1D assemblies: a zig-zag chain for 4 and a linear structure for 5. The compound [Cu(4)(tpbpa)(μ-CN)(4)](n) (6) shows a pseudo-4,8(2) topological net, while the compound [Cu(8)(tpbpa)(μ-CN)(8)](n)·2nH(2)O (7) exhibits a three-dimensional (3D) framework containing a ···PM··· double helical structure, although both of them contain (CuCN)(n) chains. The compound [Cu(2)(tdpa)(μ-I)(2)](n) (8) is a zig-zag chain based on the star-shaped molecule tpda, in which one of three dpa-arms is free of coordination to metal ions. All complexes exhibit luminescence in the solid state.  相似文献   

4.
Lanthanide hydroxide cluster complexes with acetylacetonate were synthesized by the hydrolysis of the corresponding hydrated lanthanide acetylacetonates in methanol in the presence of triethylamine. Polymeric lanthanide hydroxide complexes based on diamond-shaped dinuclear repeating units of [Ln(2)(CH(3)CO(3))(2)](4+) (Ln = La, Pr) and discrete complexes featuring a tetranuclear distorted cubane core of [Ln(4)(μ(3)-OH)(2)(μ(3)-OCH(3))(2)](8+) (Ln = Nd, Sm) and a nonanuclear core of [Ln(9)(μ(4)-O)(μ(4)-OH)(μ(3)-OH)(8)](16+) (Ln = Eu-Dy, Er, Yb) were obtained. The dependence of the cluster nuclearity on the identity of the lanthanide ion is rationalized in terms of the influences of a metal ion's Lewis acidity and the sterics about the Ln-OH unit on the kinetics of the assembly process that leads to a particular cluster.  相似文献   

5.
通过扩散法合成了一个新的配位聚合物{[Cu2(OH)(btre)1.5(1,2,4-btc)]·13H2O}n1·13H2O)(btre=1,2-二(4H-1,2,4-三唑)乙烷,1,2,4-btc=1,2,4-苯三甲酸根)。测试了1·13H2O的晶体结构,并用红外光谱、元素分析、粉末X射线衍射对其进行表征。单晶X射线衍射表明1是基于四核铜簇[Cu4μ2-OH)2N12]构筑的10-连接的3D框架,其拓扑符号为312·428·55。研究了1·13H2O的热稳定性以及对甲基橙的催化降解作用。  相似文献   

6.
The preparation and X-ray crystal structure of four 2,2'-bipyrimidine (bpm)-containing copper(II) complexes of formula {[Cu(2)(μ-bpm)(H(2)O)(4)(μ-OH)(2)][Mn(H(2)O)(6)](SO(4))(2)}(n) (1), {[Cu(2)(μ-bpm)(H(2)O)(4)(μ-OH)(2)]SiF(6)}(n) (2), {Cu(2)(μ-bpm)(H(2)O)(2)(μ-F)(2)F(2)}(n) (3), and [Cu(bpm)(H(2)O)(2)F(NO(3))][Cu(bpm)(H(2)O)(3)F]NO(3)·2H(2)O (4) are reported. The structures of 1-3 consist of chains of copper(II) ions with regular alternation of bis-bidentate bpm and di-μ-hydroxo (1 and 2) or di-μ-fluoro (3) groups, the electroneutrality being achieved by either hexaaqua manganese(II) cations plus uncoordinated sulfate anions (1), uncoordinated hexafluorosilicate anions (2), or terminally bound fluoride ligands (3). Each copper(II) ion in 1-4 is six-coordinated in elongated octahedral surroundings. 1 and 2 show identical, linear chain motifs with two bpm-nitrogen atoms and two hydroxo groups building the equatorial plane at each copper(II) ion and the axial position being filled by water molecules. In the case of 3, the axial sites at the copper atom are occupied by a bpm-nitrogen atom and a bis-monodentate fluoride anion, producing a "step-like" chain motif. The values of the angle at the hydroxo and fluoro bridges are 94.11(6) (1), 94.75(4) (2), and 101.43(4)° (3). In each case, the copper-copper separation through the bis-bidentate bpm [5.428(1) (1), 5.449(1) (2), and 5.9250(4) ? (3)] is considerably longer than that through the di-μ-hydroxo [2.8320(4) (1) and 2.824(1) ? (2)] or di-μ-fluoro [3.3027(4) ? (3)] bridges. Compound 4 is a mononuclear species whose structure is made up of neutral [Cu(bpm)(H(2)O)(2)F(NO(3))] units, [Cu(bpm)(H(2)O)(3)F](+) cations, uncoordinated nitrate anions, and crystallization water molecules, giving rise to a pseudo-helical, one-dimensional (1D) supramolecular motif. The magnetic properties of 1-3 have been investigated in the temperature range 1.9-300 K. Relatively large, alternating antiferro- [J = -149 (1) and -141 cm(-1) (2) across bis-bidentate bpm] and ferromagnetic [αJ = +194 (1) and +176 cm(-1) (2) through the dihydroxo bridges] interactions occur in 1 and 2 [the Hamiltonian being defined as H = -J∑(i=1)(n/2) (S(2i)·S(2i-1) - αS(2i)·S(2i+1))]. These values compare well with those previously reported for parent examples. Two weak intrachain antiferromagnetic interactions [J = -0.30 and αJ = -8.1 cm(-1) across bpm and the di-μ-fluoro bridges, respectively] whose values were substantiated by density functional theory (DFT)-type calculations occur in 3.  相似文献   

7.
Two new trinuclear copper(II) complexes, [Cu(3)(μ(3)-OH)(daat)(Hdat)(2)(ClO(4))(2)(H(2)O)(3)](ClO(4))(2)·2H(2)O (1) and [Cu(3)(μ(3)-OH)(aaat)(3)(H(2)O)(3)](ClO(4))(2)·3H(2)O (2) (daat = 3,5-diacetylamino-1,2,4-triazolate, Hdat = 3,5-diamino-1,2,4-triazole, and aaat = 3-acetylamino-5-amino-1,2,4-triazolate), have been prepared from 1,2,4-triazole derivatives and structurally characterized by X-ray crystallography. The structures of 1 and 2 consist of cationic trinuclear copper(II) complexes with a Cu(3)OH core held by three N,N-triazole bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with distorted square-pyramidal geometries. The magnetic properties of 1 and 2 and those of five other related 1,2,4-triazolato tricopper(II) complexes with the same triangular structure (3-7) (whose crystal structures were already reported) have been investigated in the temperature range of 1.9-300 K. The formulas of 3-7 are [Cu(3)(μ(3)-OH)(aaat)(3)(H(2)O)(3)](NO(3))(2)·H(2)O (3), {[Cu(3)(μ(3)-OH)(aat)(3)(μ(3)-SO(4))]·6H(2)O}(n) (4), and [Cu(3)(μ(3)-OH)(aat)(3)A(H(2)O)(2)]A·xH(2)O [A = NO(3)(-) (5), CF(3)SO(3)(-) (6), or ClO(4)(-) (7); x = 0 or 2] (aat =3-acetylamino-1,2,4-triazolate). The magnetic and electron paramagnetic resonance (EPR) data have been analyzed by using the following isotropic and antisymmetric exchange Hamiltonian: H = -J[S(1)S(2) + S(2)S(3)] - j[S(1)S(3)] + G[S(1) × S(2) + S(2) × S(3) + S(1) × S(3)]. 1-7 exhibit strong antiferromagnetic coupling (values for both -J and -j in the range of 210-142 cm(-1)) and antisymmetric exchange (G varying from to 27 to 36 cm(-1)). At low temperatures, their EPR spectra display high-field (g < 2.0) signals indicating that the triangles present symmetry lower than equilateral and that the antisymmetric exchange is operative. A magneto-structural study showing a lineal correlation between the Cu-O-Cu angle of the Cu(3)OH core and the isotropic exchange parameters (J and j) has been conducted. Moreover, a model based on Moriya's theory that allows the prediction of the occurrence of antisymmetric exchange in the tricopper(II) triangles, via analysis of the overlap between the ground and excited states of the local Cu(II) ions, has been proposed. In addition, analytical expressions for evaluating both the isotropic and antisymmetric exchange parameters from the experimental magnetic susceptibility data of triangular complexes with local spins (S) of (1)/(2), (3)/(2), or (5)/(2) have been purposely derived. Finally, the magnetic and EPR results of this work are discussed and compared with those of other tricopper(II) triangles reported in the literature.  相似文献   

8.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

9.
采用水热法合成了{[Cu(phen)(H2O)(o-tpha)]·H2O}n(1), [Cu2Cl4(phen)2](2), [Cu4Cl4·(bipy)2](3)和[Cu2Cl2(phen)]n(4)(bipy=2,2'-bipyridyl, phen=1,10-phenanthroline, o-H2tpha=o-phthalic acid)4个铜配合物. X射线单晶衍射结果表明, 配合物1和4是具有一维无限结构的聚合物, 配合物2是双核Cu(Ⅱ) 配合物并由氢键连成超分子, 配合物3是四核Cu(Ⅰ) 簇合物. 常温下测定了4个配合物的表面光电压光谱(SPS)、场诱导表面光电压光谱(FISPS)、IR和UV-Vis-NIR光谱. SPS的测试结果显示, 4个化合物均在300~800 nm范围内存在光伏响应带, 但是它们呈现了不同的特性. 配合物1~3的表面光电压光谱呈现出正的表面光伏响应(SPV), 配合物4的SPS呈现出负的表面光伏响应. 4个配合物的表面光伏响应带的位置、数量以及强度均有明显不同.  相似文献   

10.
The novel tetranuclear copper(II) complexes with alpha-d-glucose-1-phosphates, [Cu(4)(mu-OH)(alpha-d-Glc-1P)(2)(L)(4)(H(2)O)(2)](NO(3))(3) (L = bpy (1), phen (2)), were prepared and characterized by X-ray crystallography. Complex 1 was further transformed into the ATP stabilized tetracopper(II) complex of [Cu(4)(ATP)(2)(bpy)(4)] (4), where ATP is adenosine 5'-triphosphate.  相似文献   

11.
The reaction of CuX(2) (X(-) ≠ F(-)) salts with 1 equiv of 3-pyridyl-5-tert-butylpyrazole (HL) in basic methanol yields blue solids, from which disk complexes of the type [Cu(7)(μ(3)-OH)(4)(μ-OR)(2)(μ-L)(6)](2+) and/or the cubane [Cu(4)(μ(3)-OH)(4)(HL)(4)](4+) can be isolated by recrystallization under the appropriate conditions. Two of the disk complexes have been prepared in crystalline form: [Cu(7)(μ(3)-OH)(4)(μ-OCH(2)CF(3))(2)(μ-L)(6)][BF(4)](2) (2) and [Cu(7)(μ(3)-OH)(4)(μ-OCH(3))(2)(μ-L)(6)]Cl(2)·xCH(2)Cl(2) (3·xCH(2)Cl(2)). The molecular structures of both compounds as solvated crystals can be described as [Cu?Cu(6)(μ-OH)(4)(μ-OR)(2)(μ-L)(6)](2+) (R = CH(2)CF(3) or CH(3)) adducts. The [Cu(6)(μ-OH)(4)(μ-OR)(2)(μ-L)(6)] ring is constructed of six square-pyramidal Cu ions, linked by 1,2-pyrazolido bridges from the L(-) ligands and by basal, apical-bridging hydroxy or alkoxy groups, while the central Cu ion is bound to the four metallamacrocyclic hydroxy donors in a near-regular square-planar geometry. The L(-) ligands project above and below the metal ion core, forming two bowl-shaped cavities that are fully (R = CH(2)CF(3)) or partially (R = CH(3)) occupied by the alkoxy R substituents. Variable-temperature magnetic susceptibility measurements on 2 demonstrated antiferromagnetic interactions between the Cu ions, yielding a spin-frustrated S = (1)/(2) magnetic ground state that is fully populated below around 15 K. Electrospray ionization mass spectrometry, UV/vis/near-IR, and electron paramagnetic resonance measurements imply that the heptacopper(II) disk motif is robust in organic solvents.  相似文献   

12.
Hydro- and solvo-thermal reactions of d-block metal ions (Mn(2+), Co(2+), Zn(2+) and Cd(2+)) with monosodium 2-sulfoterephthalate (NaH(2)stp) form six 3D coordination polymers featuring cluster core [M(4)(μ(3)-OH)(2)](6+) in common: [M(2)(μ(3)-OH)(stp)(H(2)O)] (M = Co (1), Mn (2) and Zn (3)), [Zn(2)(μ(3)-OH)(stp)(H(2)O)(2)] (4), [Zn(4)(μ(3)-OH)(2)(stp)(2)(bpy)(2)(H(2)O)]·3.5H(2)O (5) and [Cd(2)(μ(3)-OH)(stp) (bpp)(2)]·H(2)O (6) (stp = 2-sulfoterephthalate, bpy = 4,4'-bipyridine and bpp = 1,3-di(4-pyridyl)propane). All these coordination polymers were characterized by single crystal X-ray diffraction, IR spectroscopy, thermogravimetric and elemental analysis. Complexes 1-3 are isostructural coordination polymers with 3D frameworks based on the chair-like [Zn(4)(μ(3)-OH)(2)](6+) core and the quintuple helixes. In complex 4, there exist double helixes in the 3D framework based on the chair-like cluster cores. Complex 5 possesses a 2-fold interpenetration structure constructed from boat-like cluster core and the bridging ligands stp and bpy. For complex 6, the chair-like cluster cores and stp ligands form a 2D (4,4) network which is further pillared by bpp linkers to a 3D architecture. Magnetic studies indicate that complex 1 exhibits magnetic ordering below 4.9 K with spin canting, and complex 2 shows weak antiferromagnetic coupling between the Mn(II) ions with g = 2.02, J(wb) = -2.88 cm(-1), J(bb) = -0.37 cm(-1). The fluorescence studies show that the emissions of complexes 3-6 are attributed to the ligand π-π* transition.  相似文献   

13.
Six copper(II) complexes of 2-hydroxy-4-methoxybenzaldehyde nicotinoylhydrazone (H2hmbn), 2-hydroxy-4-methoxyacetophenone nicotinoylhydrazone (H2hman), 2-hydroxy-4-methoxybenzaldehyde benzoylhydrazone (H2hmbb) and 2-hydroxy-4-methoxyacetophenone benzoylhydrazone (H2hmab) have been synthesized. The complexes viz. [Cu(hmbn)](2)·2H(2)O (1), [Cu(hman)](2) (2), [Cu(hmbb)](2)·2H(2)O (3), [Cu(hmbb)phen]·1(1/2)H2O (4), [Cu(hmbb)(bipy)·H2O] (5) and [Cu(hmab)phen] (6) were characterized by different physicochemical techniques. The crystal structure of [Cu(hman)phen] is obtained and it has a distorted square pyramidal geometry with π-π stacking interactions and significant C-H π interactions.  相似文献   

14.
An uncommon butterfly-like tetranuclear copper(ii) cluster with the formula {[Cu(4)(μ(3)-OH)(2)(μ(4)-Cl)(H(2)O)(2)(L)(2)]·Cl(H(2)O)(7)}(n) (1) (H(2)L = 1,2-bis[3-(1,2,4-triazolyl)-4-amino-5-carboxylmethylthio]ethane) has been synthesized. Compound 1 exhibits interesting anion exchange characteristics, in which both guest and coordinated Cl(-) can be replaced by I(-) or NO(3)(-) in water. Furthermore, a high catalytic selectivity to produce poly(phenylene ether) by the oxidative coupling of 2,6-dimethylphenol in water is found to be 74% for 1 and 87% for the anion-exchanged product 1-MI(x), respectively. Additionally, the antiferromagnetic interaction among Cu ions for compound 1 is also found.  相似文献   

15.
A series of Cu(I) complexes with a [Cu(NN)(PP)](+) moiety, [Cu(phen)(pba)](BF(4)) (1a), [Cu(2)(phen)(2)(pbaa)](BF(4))(2) (2a), [Cu(2)(phen)(2)(pnaa)](BF(4))(2) (3a), [Cu(2)(phen)(2)(pbbaa)](BF(4))(2) (4a), [Cu(dmp)(pba)](BF(4)) (1b), [Cu(2)(dmp)(2)(pbaa)](BF(4))(2) (2b), [Cu(2)(dmp)(2)(pnaa)](BF(4))(2) (3b) and [Cu(2)(dmp)(2)(pbbaa)](BF(4))(2) (4b) (phen = 1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, pba = N,N-bis((diphenylphosphino)methyl)benzenamine, pbaa = N,N,N',N'-tetrakis((diphenylphosphino)methyl)benzene-1,4-diamine, pnaa = N,N,N',N'-tetrakis((diphenylphosphino)methyl)naphthalene-1,5-diamine and pbbaa = N,N,N',N'-tetrakis((diphenylphosphino)methyl)biphenyl-4,4'-diamine), were rationally designed and synthesized. These complexes were characterized by (1)H and (31)P NMR, electrospray mass spectrometry, elemental analysis and X-ray crystal structure analysis. Introduction of different central arene spacers (phenyl, naphthyl, biphenyl) into ligands, resulting in the size variation of these complexes, aims to tune the photophysical properties of the complexes. Each Cu(I) ion in these complexes adopts a distorted tetrahedral geometry constructed by the chelating diimine and phosphine groups. Intermolecular C-H···π and/or π···π interactions are involved in the solid states. The dmp-containing complex exhibits better emission relative to the corresponding phen complex due to the steric encumbrance of bulky alkyl groups. Furthermore, for complexes with identical diimine but different phosphine ligands, the tendency of increased emission lifetime as well as blue-shifted emission in the solid state follows with the decrease in size of complexes. Intermolecular C-H···π interactions have an influence on the final solid state photophysical properties through vibrationally relaxed non-radiative energy transfer in the excited state. Smaller-sized complexes show better photophysical properties due to less vibrationally relaxed behavior related to flexible C-H···π bonds. Nevertheless, the tendency for increased quantum yield and emission lifetime, as well as blue-shifted emission in dilute solution goes with the increase in size of complexes. The central arene ring (phenyl, naphthyl or biphenyl) has an influence on the final photophysical properties. The larger the π-conjugated extension of central arene ring is, the better the photophysical properties of complex are. The rigid and large-sized complex 3b, with a high quantum yield and long lifetime, is the best luminophore among these complexes.  相似文献   

16.
The syntheses, structural determinations and magnetic studies of tetranuclear M(II)Ln(III) complexes (M = Ni, Zn; Ln = Y, Gd, Dy) involving an in situ compartmentalized schiff base ligand HL derived from the condensation of o-vanillin and 2-hydrazinopyridine as main ligand are described. Single-crystal X-ray diffraction reveals that all complexes are closely isostructural, with the central core composed of distorted {M(2)Ln(2)O(4)} cubes of the formulas [Ni(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(4)(H(2)O)(3.5)](ClO(4))(2)·3H(2)O (Ln = Y 1 and Gd 2), [Ni(2)Dy(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)(1.5)](ClO(4))·EtOH·H(2)O (3) and [Zn(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)](ClO(4))·2EtOH·1.5H(2)O (Gd 4 and Dy 5). The Ln(III) ions are linked by two hydroxo bridges and each M(II) ion is also involved in a double phenoxo-hydroxo bridge with the two Ln(III) ions, so that each hydroxo group is triply linked to the two Ln(III) and one M(II) ions. The magnetic properties of all complexes have been investigated. Ni(2)Y(2) (1) has a ferromagnetic Ni(II)Ni(II) interaction. A weak ferromagnetic Ni(II)Ln(III) interaction is observed in the Ni(2)Ln(2) complexes (Ln = Gd 2, Dy 3), along with a weak antiferromagnetic Ln(III)Ln(III) interaction, a D zero-field splitting term for the nickel ion and a ferromagnetic Ni(II)Ni(II) interaction. The isomorphous Zn(2)Ln(2) (Ln = Gd 4, Dy 5) does confirm the presence of a weak antiferromagnetic Ln(III)Ln(III) interaction. The Ni(2)Dy(2) complex (3) does not behave as a SMM, which could result from a subtractive combination of the Dy and Ni anisotropies and an increased transverse anisotropy, leading to large tunnel splittings and quantum tunneling of magnetization. On the other hand, Zn(2)Dy(2) (5) exhibits a possible SMM behavior, where its slow relaxation of magnetization is probably attributed to the presence of the anisotropic Dy(III) ions.  相似文献   

17.
The copper(II) complexes [Cu(4)(1,3-tpbd)(2)(H(2)O)(4)(NO(3))(4)](n)(NO(3))(4n)·13nH(2)O (1), [Cu(4)(1,3-tpbd)(2)(AsO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (2), [Cu(4)(1,3-tpbd)(2)(PO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (3), [Cu(2)(1,3-tpbd){(PhO)(2)PO(2)}(2)](2)(ClO(4))(4) (4), and [Cu(2)(1,3-tpbd){(PhO)PO(3)}(2)(H(2)O)(0.69)(CH(3)CN)(0.31)](2)(BPh(4))(4)·Et(2)O·CH(3)CN (5) [1,3-tpbd = N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-benzenediamine, BPh(4)(-) = tetraphenylborate] were prepared and structurally characterized. Analyses of the magnetic data of 2, 3, 4, and [Cu(2)(2,6-tpcd)(H(2)O)Cl](ClO(4))(2) (6) [2,6-tpcd = 2,6-bis[bis(2-pyridylmethyl)amino]-p-cresolate] show the occurrence of weak antiferromagnetic interactions between the copper(II) ions, the bis-terdentate 1,3-tpbd/2,6-tpcd, μ(4)-XO(4) (X = As and P) μ(1,2)-OPO and μ-O(phenolate) appearing as poor mediators of exchange interactions in this series of compounds. Simple orbital symmetry considerations based on the structural knowledge account for the small magnitude of the magnetic couplings found in these copper(II) compounds.  相似文献   

18.
The new three-dimensional (3D) heterometallic Cu(II)/Fe(II) coordination polymers [Cu(6)(H(2)tea)(6)Fe(CN)(6)](n)(NO(3))(2n)·6nH(2)O (1) and [Cu(6)(Hmdea)(6)Fe(CN)(6)](n)(NO(3))(2n)·7nH(2)O (2) have been easily generated by aqueous-medium self-assembly reactions of copper(II) nitrate with triethanolamine or N-methyldiethanolamine (H(3)tea or H(2)mdea, respectively), in the presence of potassium ferricyanide and sodium hydroxide. They have been isolated as air-stable crystalline solids and fully characterized including by single-crystal X-ray diffraction analyses. The latter reveal the formation of 3D metal-organic frameworks that are constructed from the [Cu(2)(μ-H(2)tea)(2)](2+) or [Cu(2)(μ-Hmdea)(2)](2+) nodes and the octahedral [Fe(CN)(6)](4-) linkers, featuring regular (1) or distorted (2) octahedral net skeletons. Upon dehydration, both compounds show reversible escape and binding processes toward water or methanol molecules. Magnetic susceptibility measurements of 1 and 2 reveal strong antiferromagnetic [J = -199(1) cm(-1)] or strong ferromagnetic [J = +153(1) cm(-1)] couplings between the copper(II) ions through the μ-O-alkoxo atoms in 1 or 2, respectively. The differences in magnetic behavior are explained in terms of the dependence of the magnetic coupling constant on the Cu-O-Cu bridging angle. Compounds 1 and 2 also act as efficient catalyst precursors for the mild oxidation of cyclohexane by aqueous hydrogen peroxide to cyclohexanol and cyclohexanone (homogeneous catalytic system), leading to maximum total yields (based on cyclohexane) and turnover numbers (TONs) up to about 22% and 470, respectively.  相似文献   

19.
Wang R  Liu H  Carducci MD  Jin T  Zheng C  Zheng Z 《Inorganic chemistry》2001,40(12):2743-2750
Tetranuclear lanthanide-hydroxo complexes of the general formula [Ln(4)(mu(3)-OH)(4)(AA)(x)(H(2)O)(y)](8+) (1, Ln = Sm, AA = Gly, x = 5, y = 11; 2, Ln = Nd, AA = Ala, x = 6, y = 10; 3, Ln = Er, AA = Val, x = 5, y = 10) have been prepared by alpha-amino acid controlled hydrolysis of lanthanide ions under near physiological pH conditions (pH 6-7). The core component of these compounds is a cationic cluster [Ln(4)(mu(3)-OH)(4)](8+) whose constituent lanthanide ions and triply bridging hydroxo groups occupy the alternate vertexes of a distorted cube. The amino acid ligands coordinate the lanthanide ions via bridging carboxylate groups. Utilizing L-glutamic acid as the supporting ligand, a cationic cluster complex (4) formulated as [Er(4)(mu(3)-OH)(4)(Glu)(3)(H(2)O)(8)](5+) has been obtained. Its extended solid-state structure is composed of the cubane-like [Er(4)(mu(3)-OH)(4)](8+) cluster building units interlinked by the carboxylate groups of the glutamate ligands. All compounds are characterized by using a combination of spectroscopic techniques and microanalysis (CHN and metal). Infrared spectra of the complexes suggest the coordinated amino acids to be zwitterionic. The presence of mass (MALDI-TOF) envelopes corresponding to the [Ln(4)(mu(3)-OH)(4)](8+) (Ln = trivalent Sm, Nd, or Er) core containing fragments manifests the integrity of the cubane-like cluster unit. Magnetic studies using Evans' method suggest that exchange interactions between the lanthanide ions are insignificant at ambient temperature. The structural identities of all four compounds have been established crystallographically. The tetranuclear cluster core has been demonstrated to be a common structural motif in these complexes. A mechanism responsible for its self-assembly is postulated.  相似文献   

20.
Liu GN  Guo GC  Zhang MJ  Guo JS  Zeng HY  Huang JS 《Inorganic chemistry》2011,50(19):9660-9669
1,10-Phenanthroline (phen) and monoprotonated methylamine molecules were used as a novel cotemplate to direct the formation of a new inorganic-organic hybrid selenidostannate, (CH(3)NH(3))(4)(Sn(2)Se(6))·6phen (1); while the utilization of three types of transition-metal (TM) phen complex cations with the TM/phen ration of 1:1, 1:2, and 1:3 as structure directors affords {[Mn(phen)(2)](2)(μ(2)-Sn(2)Se(6))}·H(2)O (2a), {[Fe(phen)(2)](2)(μ(2)-Sn(2)Se(6))} (2b), {[Mn(phen)](2)(μ(4)-Sn(2)Se(6))}(n) (3), {[Mn(phen)(2)](Sn(2)Se(5))}(n) (4), and [Fe(phen)(3)](n)(Sn(3)Se(7))(n)·1.25nH(2)O (5). These compounds show diverse structures with the selenidostannate anions varying from discrete, μ(2)- and μ(4)- (Sn(2)Se(6))(4-) anions, to one-dimensional (1-D) (1)(∞)(Sn(2)Se(5)(2-)) anionic chains, and two-dimensional (2-D) extended (2)(∞)(Sn(3)Se(7)(2-)) anionic layers, demonstrating different structure-directing abilities of the cotemplate and the three types of TM phen complex cations. This work clearly indicates that the approach of modifying the number of the free coordination sites of unsaturated TM phen complex cations is very exciting as a way to synthesize novel hybrid chalcogenidometalates. Of particular interest, the present compounds exhibit interesting optical properties that reflect the combined effects of both photoluminescence-active organic components and semiconducting inorganic chalcogenidometalate anionic networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号