首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
If X is a geodesic metric space and x 1, x 2, x 3X, a geodesic triangle T = {x 1, x 2, x 3} is the union of the three geodesics [x 1 x 2], [x 2 x 3] and [x 3 x 1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ(X) the sharp hyperbolicity constant of X, i.e. δ(X) = inf{δ ≥ 0: X is δ-hyperbolic}. In this paper we characterize the product graphs G 1 × G 2 which are hyperbolic, in terms of G 1 and G 2: the product graph G 1 × G 2 is hyperbolic if and only if G 1 is hyperbolic and G 2 is bounded or G 2 is hyperbolic and G 1 is bounded. We also prove some sharp relations between the hyperbolicity constant of G 1 × G 2, δ(G 1), δ(G 2) and the diameters of G 1 and G 2 (and we find families of graphs for which the inequalities are attained). Furthermore, we obtain the precise value of the hyperbolicity constant for many product graphs.  相似文献   

2.
If X is a geodesic metric space and x 1,x 2,x 3 ∈ X, a geodesic triangle T = {x 1,x 2,x 3} is the union of the three geodesics [x 1 x 2], [x 2 x 3] and [x 3 x 1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ(X) the sharp hyperbolicity constant of X, i.e. $\delta(X)=\inf\{\delta\ge 0: \, X \, \text{ is $\delta(X)=\inf\{\delta\ge 0: \, X \, \text{ is In this paper we relate the hyperbolicity constant of a graph with some known parameters of the graph, as its independence number, its maximum and minimum degree and its domination number. Furthermore, we compute explicitly the hyperbolicity constant of some class of product graphs.  相似文献   

3.
On total chromatic number of planar graphs without 4-cycles   总被引:5,自引:0,他引:5  
Let G be a simple graph with maximum degree A(G) and total chromatic number Xve(G). Vizing conjectured thatΔ(G) 1≤Xve(G)≤Δ(G) 2 (Total Chromatic Conjecture). Even for planar graphs, this conjecture has not been settled yet. The unsettled difficult case for planar graphs isΔ(G) = 6. This paper shows that if G is a simple planar graph with maximum degree 6 and without 4-cycles, then Xve(G)≤8. Together with the previous results on this topic, this shows that every simple planar graph without 4-cycles satisfies the Total Chromatic Conjecture.  相似文献   

4.
If X is a geodesic metric space and x 1,x 2,x 3?∈?X, a geodesic triangle T?=?{x 1,x 2,x 3} is the union of the three geodesics [x 1 x 2], [x 2 x 3] and [x 3 x 1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ(X) the sharp hyperbolicity constant of X, i.e., ${\delta}(X)=\inf\{{\delta}\ge 0: \, X \, \text{is $\delta$-hyperbolic}\}. $ In this paper we study the hyperbolicity of median graphs and we also obtain some results about general hyperbolic graphs. In particular, we prove that a median graph is hyperbolic if and only if its bigons are thin.  相似文献   

5.
If X is a geodesic metric space and x1,x2,x3X, a geodesic triangleT={x1,x2,x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if, for every geodesic triangle T in X, every side of T is contained in a δ-neighborhood of the union of the other two sides. We denote by δ(X) the sharpest hyperbolicity constant of X, i.e. . In this paper, we obtain several tight bounds for the hyperbolicity constant of a graph and precise values of this constant for some important families of graphs. In particular, we investigate the relationship between the hyperbolicity constant of a graph and its number of edges, diameter and cycles. As a consequence of our results, we show that if G is any graph with m edges with lengths , then , and if and only if G is isomorphic to Cm. Moreover, we prove the inequality for every graph, and we use this inequality in order to compute the precise value δ(G) for some common graphs.  相似文献   

6.
On the adjacent-vertex-strongly-distinguishing total coloring of graphs   总被引:6,自引:0,他引:6  
For any vertex u∈V(G), let T_N(U)={u}∪{uv|uv∈E(G), v∈v(G)}∪{v∈v(G)|uv∈E(G)}and let f be a total k-coloring of G. The total-color neighbor of a vertex u of G is the color set C_f(u)={f(x)|x∈TN(U)}. For any two adjacent vertices x and y of V(G)such that C_f(x)≠C_f(y), we refer to f as a k-avsdt-coloring of G("avsdt"is the abbreviation of"adjacent-vertex-strongly- distinguishing total"). The avsdt-coloring number of G, denoted by X_(ast)(G), is the minimal number of colors required for a avsdt-coloring of G. In this paper, the avsdt-coloring numbers on some familiar graphs are studied, such as paths, cycles, complete graphs, complete bipartite graphs and so on. We proveΔ(G) 1≤X_(ast)(G)≤Δ(G) 2 for any tree or unique cycle graph G.  相似文献   

7.
Let G be an outerplanar graph with maximum degree △. Let χ(G^2) and A(G) denote the chromatic number of the square and the L(2, 1)-labelling number of G, respectively. In this paper we prove the following results: (1) χ(G^2) = 7 if △= 6; (2) λ(G) ≤ △ +5 if △ ≥ 4, and ),(G)≤ 7 if △ = 3; and (3) there is an outerplanar graph G with △ = 4 such that )λ(G) = 7. These improve some known results on the distance two labelling of outerplanar graphs.  相似文献   

8.
We present results on total domination in a partitioned graph G = (V, E). Let γ t (G) denote the total dominating number of G. For a partition , k ≥ 2, of V, let γ t (G; V i ) be the cardinality of a smallest subset of V such that every vertex of V i has a neighbour in it and define the following
We summarize known bounds on γ t (G) and for graphs with all degrees at least δ we derive the following bounds for f t (G; k) and g t (G; k).
(i)  For δ ≥ 2 and k ≥ 3 we prove f t (G; k) ≤ 11|V|/7 and this inequality is best possible.
(ii)  for δ ≥ 3 we prove that f t (G; 2) ≤ (5/4 − 1/372)|V|. That inequality may not be best possible, but we conjecture that f t (G; 2) ≤ 7|V|/6 is.
(iii)  for δ ≥ 3 we prove f t (G; k) ≤  3|V|/2 and this inequality is best possible.
(iv)  for δ ≥ 3 the inequality g t (G; k) ≤ 3|V|/4 holds and is best possible.
  相似文献   

9.
 Let G be a graph with n vertices, and denote as γ(G) (as θ(G)) the cardinality of a minimum edge cover (of a minimum clique cover) of G. Let E (let C) be the edge-vertex (the clique-vertex) incidence matrix of G; write then P(E)={x∈ℜ n :Ex1,x0}, P(C)={x∈ℜ n :Cx1,x0}, α E (G)=max{1 T x subject to xP(E)}, and α C (G)= max{1 T x subject to xP(C)}. In this paper we prove that if α E (G)=α C (G), then γ(G)=θ(G). Received: May 20, 1998?Final version received: April 12, 1999  相似文献   

10.
Expanders obtained from affine transformations   总被引:1,自引:0,他引:1  
A bipartite graphG=(U, V, E) is an (n, k, δ, α) expander if |U|=|V|=n, |E|≦kn, and for anyXU with |X|≦αn, |Γ G (X)|≧(1+δ(1−|X|/n)) |X|, whereΓ G (X) is the set of nodes inV connected to nodes inX with edges inE. We show, using relatively elementary analysis in linear algebra, that the problem of estimating the coefficientδ of a bipartite graph is reduced to that of estimating the second largest eigenvalue of a matrix related to the graph. In particular, we consider the case where the bipartite graphs are defined from affine transformations, and obtain some general results on estimating the eigenvalues of the matrix by using the discrete Fourier transform. These results are then used to estimate the expanding coefficients of bipartite graphs obtained from two-dimensional affine transformations and those obtained from one-dimensional ones.  相似文献   

11.
 Some known results on claw-free graphs are generalized to the larger class of almost claw-free graphs. In this paper, we prove the following two results and conjecture that every 5-connected almost claw-free graph is hamiltonian. (1). Every 2-connected almost claw-free graph GJ on n≤ 4 δ vertices is hamiltonian, where J is the set of all graphs defined as follows: any graph G in J can be decomposed into three disjoint connected subgraphs G 1, G 2 and G 3 such that E G (G i , G j ) = {u i , u j , v i v j } for ij and i,j = 1, 2, 3 (where u i v i V(G i ) for i = 1, 2, 3). Moreover the bound 4δ is best possible, thereby fully generalizing several previous results. (2). Every 3-connected almost claw-free graph on at most 5δ−5 vertices is hamiltonian, hereby fully generalizing the corresponding result on claw-free graphs. Received: September 21, 1998 Final version received: August 18, 1999  相似文献   

12.
Let G be a graph with vertex set V(G), and let k ⩾ 1 be an integer. A subset DV(G) is called a k-dominating set if every vertex υV(G)-D has at least k neighbors in D. The k-domination number γ k (G) of G is the minimum cardinality of a k-dominating set in G. If G is a graph with minimum degree δ(G) ⩾ k + 1, then we prove that
$ \gamma _{k + 1} (G) \leqslant \frac{{|V(G)| + \gamma _k (G)}} {2}. $ \gamma _{k + 1} (G) \leqslant \frac{{|V(G)| + \gamma _k (G)}} {2}.   相似文献   

13.
We prove the following theorem: For a connected noncomplete graph G, let τ(G): = min{dG(u) + dG(v)|dG(u, v) = 2}. Suppose G is a 3-connected noncomplete graph. Then through each edge of G there passes a cycle of length ≥ min{|V(G)|, τ (G) − 1}. © 1997 John Wiley & Sons, Inc.  相似文献   

14.
We introduce a new class of graphs which we call P 3-dominated graphs. This class properly contains all quasi-claw-free graphs, and hence all claw-free graphs. Let G be a 2-connected P 3-dominated graph. We prove that G is hamiltonian if α(G 2) ≤ κ(G), with two exceptions: K 2,3 and K 1,1,3. We also prove that G is hamiltonian, if G is 3-connected and |V(G)| ≤ 5δ(G) − 5. These results extend known results on (quasi-)claw-free graphs. This paper was completed when both authors visited the Center for Combinatorics, Nankai University, Tianjin. They gratefully acknowledge the hospitality and support of the Center for Combinatorics and Nankai University. The work of E.Vumar is sponsored by SRF for ROCS, REM.  相似文献   

15.
 Let p(G) and c(G) denote the number of vertices in a longest path and a longest cycle, respectively, of a finite, simple graph G. Define σ4(G)=min{d(x 1)+d(x 2)+ d(x 3)+d(x 4) | {x 1,…,x 4} is independent in G}. In this paper, the difference p(G)−c(G) is considered for 2-connected graphs G with σ4(G)≥|V(G)|+3. Among others, we show that p(G)−c(G)≤2 or every longest path in G is a dominating path. Received: August 28, 2000 Final version received: May 23, 2002  相似文献   

16.
The open neighborhood N G (e) of an edge e in a graph G is the set consisting of all edges having a common end-vertex with e. Let f be a function on E(G), the edge set of G, into the set {−1, 1}. If for each eE(G), then f is called a signed edge total dominating function of G. The minimum of the values , taken over all signed edge total dominating function f of G, is called the signed edge total domination number of G and is denoted by γ st ′(G). Obviously, γ st ′(G) is defined only for graphs G which have no connected components isomorphic to K 2. In this paper we present some lower bounds for γ st ′(G). In particular, we prove that γ st ′(T) ⩾ 2 − m/3 for every tree T of size m ⩾ 2. We also classify all trees T with γ st ′(T). Research supported by a Faculty Research Grant, University of West Georgia.  相似文献   

17.
Baogang Xu 《Discrete Mathematics》2008,308(15):3134-3142
A circular-perfect graph is a graph of which each induced subgraph has the same circular chromatic number as its circular clique number. In this paper, (1) we prove a lower bound on the order of minimally circular-imperfect graphs, and characterize those that attain the bound; (2) we prove that if G is a claw-free minimally circular-imperfect graph such that ωc(G-x)>ω(G-x) for some xV(G), then G=K(2k+1)/2+x for an integer k; and (3) we also characterize all minimally circular-imperfect line graphs.  相似文献   

18.
Mycielski introduced a new graph transformation μ(G) for graph G, which is called the Mycielskian of G. A graph G is super connected or simply super-κ (resp. super edge connected or super-λ), if every minimum vertex cut (resp. minimum edge cut) isolates a vertex of G. In this paper, we show that for a connected graph G with |V(G)| ≥ 2, μ(G) is super-κ if and only if δ(G) < 2κ(G), and μ(G) is super-λ if and only if G\ncong K2{G\ncong K_2}.  相似文献   

19.
Let G be a finite non-Abelian group. We define a graph Γ G ; called the noncommuting graph of G; with a vertex set GZ(G) such that two vertices x and y are adjacent if and only if xyyx: Abdollahi, Akbari, and Maimani put forward the following conjecture (the AAM conjecture): If S is a finite non-Abelian simple group and G is a group such that Γ S ≅ Γ G ; then SG: It is still unknown if this conjecture holds for all simple finite groups with connected prime graph except \mathbbA10 {\mathbb{A}_{10}} , L 4(8), L 4(4), and U 4(4). In this paper, we prove that if \mathbbA16 {\mathbb{A}_{16}} denotes the alternating group of degree 16; then, for any finite group G; the graph isomorphism G\mathbbA16 @ GG {\Gamma_{{\mathbb{A}_{16}}}} \cong {\Gamma_G} implies that \mathbbA16 @ G {\mathbb{A}_{16}} \cong G .  相似文献   

20.
Let G be a connected graph. We denote by σ(G,x) and δ(G) respectively the σ-polynomial and the edge-density of G, where . If σ(G,x) has at least an unreal root, then G is said to be a σ-unreal graph. Let δ(n) be the minimum edgedensity over all n vertices graphs with σ-unreal roots. In this paper, by using the theory of adjoint polynomials, a negative answer to a problem posed by Brenti et al. is given and the following results are obtained: For any positive integer a and rational number 0≤c≤1, there exists at least a graph sequence {G i}1≤ia such that G i is σ-unreal and δ(G i)→c as n→∞ for all 1 ≤ia, and moreover, δ(n)→0 as n→∞. Supported by the National Natural Science Foundation of China (10061003) and the Science Foundation of the State Education Ministry of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号