首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of collagen (type I from calf skin) was studied, comparing different collagen sources and using substrates which differ according to surface hydrophobicity (polystyrene, either native, with OH substitution of each repeat unit, with COOH substitution of a small fraction of repeat units, or surface modified by oxygen plasma discharge). The atomic force microscopy observation of the adsorbed layers showed that aggregation in the solution acts in competition with the formation of fibrils in the adsorbed phase; more aggregated solutions behave like less concentrated solutions regarding adsorption. The fibrils formed in the adsorbed phase are much smaller than the fibrils formed in the suspension, and, in contrast with the latter, do not show regular band pattern. It is confirmed that fibrils formation occurs more readily on more hydrophobic surfaces, which is tentatively attributed to a greater mobility of individual molecules adsorbed on more hydrophobic substrates. This interpretation is supported by previously published radiochemical measurements. However, the comparison of strongly different adsorption procedures (progressive on the one hand; quick and massive on the other hand) did not provide any additional clue.  相似文献   

2.
The organization of adsorbed type I collagen layers was examined on a series of polystyrene (PS)/poly(methyl methacrylate) (PMMA) heterogeneous surfaces obtained by phase separation in thin films. These thin films were prepared by spin coating from solutions in either dioxane or toluene of PS and PMMA in different proportions. Their morphology was unraveled combining the information coming from X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle measurements. Substrates with PMMA inclusions in a PS matrix and, conversely, substrates with PS inclusions in a PMMA matrix were prepared, the inclusions being either under the form of pits or islands, with diameters in the submicrometer range. The organization of collagen layers obtained by adsorption on these surfaces was then investigated. On pure PMMA, the layer was quite smooth with assemblies of a few collagen molecules, while bigger assemblies were found on pure PS. On the heterogeneous surfaces, it appeared clearly that the diameter and length of collagen assemblies was modulated by the size and surface coverage of the PS domains. If the PS domains, either surrounding or surrounded by the PMMA phase, were above 600 nm wide, a heterogeneous distribution of collagen was found, in agreement with observations made on pure polymers. Otherwise, fibrils could be formed, that were longer compared to those observed on pure polymers. Additionally, the surface nitrogen content determined by XPS, which is linked to the protein adsorbed amount, increased roughly linearly with the PS surface fraction, whatever the size of PS domains, suggesting that adsorbed collagen amount on heterogeneous PS/PMMA surfaces is a combination of that observed on the pure polymers. This work thus shows that PS/PMMA surface heterogeneities can govern collagen organization. This opens the way to a better control of collagen supramolecular organization at interfaces, which could in turn allow cell-material interactions to be tailored.  相似文献   

3.
Elucidating the assembly mechanism of the collagen at interfaces is important. In this work, the structures of type I collagen molecules adsorbed on bare mica and on LB films of propanediyl-bis(dimethyloctadecylammonium bromide) transferred onto mica at zero surface pressure was characterized by AFM. On mica, the granular morphologies randomly distributed as elongated structures were observed, which were resulted from the interlacement of the adsorbed collagen molecules. On the LB films, the topographical evolution of the adsorbed collagen layers upon the increasing adsorption time was investigated. After 30 s, the collagen assembled into network-like structure composed of the interwoven fibrils, called as the first adlayer, which was attributed to its adsorption on the LB film by means of a limited number of contact points followed by the lateral association. One minute later, the second adlayer was observed on the top of the first adlayer. Up to 5 min, collagen layers, formed by inter-twisted fibrils, were observed. Under the same conditions after 1 min adsorption on LB film, the AFM image of the layer obtained in the diluted hydrochloric acid solution is analogous to the result of the sample dried in air, indicating that it is the LB film that leads to the formation of the network structure of collagen and the formation of the network structures of collagen layers is tentatively ascribed to the self-assembly of type I collagen molecules on LB film, not to the dewetting of the collagen solution during drying.  相似文献   

4.
The adsorption from various solutions of triple-helical soluble collagen monomers to solid surfaces was studied by labeling the collagen with 1251. Adsorption to glass, siliconized glass, and Teflon, from aqueous solutions at various pH and ionic strength, was determined at collagen concentrations from 2 to 25 μg/ml. Adsorption was shown to be irreversible and little dependent on pH and ionic strength but increasing enormously as the surface is made more hydrophobic. Surface denaturation of the collagen by heat results in a substantial loss of material. The kinetics of adsorption suggest that the adsorption process may be selective and that not all collagen molecules which reach the surface are immediately adsorbed. Checking these results with earlier measurements of adsorbed layer thickness, a model for collagen adsorption is proposed.  相似文献   

5.
The supramolecular organization of collagen adsorbed from a 7 microg/ml solution on polystyrene was investigated as a function of the adsorption duration (from 1 min to 24 h) and of the drying conditions (fast drying under a nitrogen flow, slow drying in a water-saturated atmosphere). The morphology of the created surfaces was examined by atomic force microscopy (AFM), while complementary information regarding the adsorbed amount and the organization of the adsorbed layers was obtained using radioassays, X-ray photoelectron spectroscopy (XPS), and wetting measurements. The collagen adsorbed amount increased up to an adsorption duration of 5 h and then leveled off at a value of 0.9 microg/cm2. For samples obtained by fast drying, modeling of the N/C ratios obtained by XPS in terms of thickness and surface coverage, in combination with the adsorbed amount, water contact angle measurements and AFM images, indicated that the adsorbed layer formed a felt starting from 30 min of adsorption, the density and/or the thickness of which increased with the adsorption time. Upon slow drying, the collagen layers formed after adsorption times up to about 2 h underwent a strong reorganization. The obtained nanopatterns were attributed to dewetting, the liquid film being ruptured and adsorbed collagen being displaced by the water meniscus. At higher adsorption times, the organization of the collagen layer was similar to that obtained after fast drying, because the onset of dewetting and/or collagen displacement were prevented by the high density of the collagen felt.  相似文献   

6.
The adsorption of a zwitterionic diblock copolymer, poly(2-(diethylamino)ethyl methacrylate)-block-poly(methacrylic acid) (PDEA59-PMAA50), at the silica/aqueous solution interface has been characterised as a function of pH. In acidic solution, this copolymer forms core-shell micelles with the neutral PMAA chains being located in the hydrophobic cores and the protonated PDEA chains forming the cationic micelle coronas. In alkaline solution, the copolymer forms the analogous inverted micelles with anionic PMAA coronas and hydrophobic PDEA cores. The morphology of the adsorbed layer was observed in situ using soft-contact atomic force microscopy (AFM): this technique suggests the formation of a thin adsorbed layer at pH 4 due to the adsorption of individual copolymer chains (unimers) rather than micelle aggregates. This is supported by the remarkably low dissipation values and the relatively low degrees of hydration for the adsorbed layers, as estimated using a combination of quartz crystal microbalance with dissipation monitoring (QCM-D) and optical reflectometry (OR). In alkaline solution, analysis of the adsorption data suggests a conformation for the adsorbed copolymers where one block projects normal to the solid/liquid interface; this layer consists of a hydrophobic PDEA anchor block adsorbed on the silica surface and an anionic PMAA buoy block extending into the solution phase. Tapping mode AFM studies were also carried out on the silica surfaces after removal from the copolymer solutions and subsequent drying. Interestingly, in these cases micelle-like surface aggregates were observed from both acidic and alkaline solutions. The lateral dimension of the aggregates seen is consistent with the corresponding hydrodynamic diameter of the copolymer micelles in bulk solution. The combination of the in situ and ex situ AFM data provides evidence that, for this copolymer, micelle aggregates are only seen in the ex situ dry state as a result of the substrate withdrawal and drying process. It remains unclear whether these aggregates are caused by micelle deposition at the surface during the substrate withdrawal from the solution or as a result of unimer rearrangements at the drying front as the liquid recedes from the surface.  相似文献   

7.
The adsorption of benzethonium chloride from aqueous solutions on the surface of finely dispersed particles of aluminum oxide, titanium dioxide, and zirconium dioxide is investigated. The ratio of the amount of adsorbed benzethonium chloride molecules to the amount of surface hydroxyl groups as potential adsorption sites is proposed to be used for characterizing the structure of adsorption layers. It is shown that the formation of supramolecular structures of benzethonium chloride molecules on solid surfaces begins when its concentrations in suspensions is significantly lower than the critical micellization concentration. It is established that benzethonium chloride is adsorbed via simultaneous interaction of the surfactant molecules with the surface hydroxyl groups and hydrophobic interaction of their hydrocarbon tails; the amounts of molecules adsorbed as a result of these interactions depend on both benzethonium chloride concentration in a solution and the density of the hydroxyl groups on an oxide surface.  相似文献   

8.
This research was directed at understanding cationic surfactant adsorption phenomena on wet-ground natural quartz, mainly with dodecylpyridinium chloride as the model surfactant. How these surfactant ions adsorb at the interface was delineated through measurements of adsorption isotherms, zeta potentials, suspension stability, contact angles, induction times, and flotation response. Hydrocarbon chain association of adsorbed surfactant ions (or self-association) leads to four distinct adsorption regions as the concentration of surfactant is increased in solution. The same four regions manifest themselves in the behavior of all of the interfacial processes studied. At low concentrations, adsorption is controlled primarily by electrostatic interactions, but when the adsorbed surfactant ions begin to associate into hemimicelles at the surface, hydrophobic chain interactions control the adsorption process. The results of experiments with alkylpyridinium chlorides of 12, 14 and 16 carbon atoms can be normalized in terms of their CMCs, which clearly show that surface aggregation phenomena are driven by the same hydrophobic interactions that lead to micelle formation in bulk solution.  相似文献   

9.
The kinetics of adsorption of lysozyme and alpha-lactalbumin from aqueous solution on silica and hydrophobized silica has been studied. The initial rate of adsorption of lysozyme at the hydrophilic surface is comparable with the limiting flux. For lysozyme at the hydrophobic surface and alpha-lactalbumin on both surfaces, the rate of adsorption is lower than the limiting flux, but the adsorption proceeds cooperatively, as manifested by an increase in the adsorption rate after the first protein molecules are adsorbed. At the hydrophilic surface, adsorption saturation (reflected in a steady-state value of the adsorbed amount) of both proteins strongly depends on the rate of adsorption, but for the hydrophobic surface no such dependency is observed. It points to structural relaxation ("spreading") of the adsorbed protein molecules, which occurs at the hydrophobic surface faster than at the hydrophilic one. For lysozyme, desorption has been studied as well. It is found that the desorbable fraction decreases after longer residence time of the protein at the interface.  相似文献   

10.
The capillary electrokinetics method (measurements of streaming potential and current in original and hydrophobized fused quartz capillaries with radii of 5–7 μm) is employed to study the formation of adsorption layers upon contact with solutions containing a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). It is shown that polyelectrolyte adsorption causes the charge reversal of both hydrophilic and hydrophobic surfaces, with a smaller amount of the substance being adsorbed on the hydrophobic than on the hydrophilic surface. The adsorption on both surfaces increases with the polymer solution concentration. The cationic polyelectrolyte adsorption on the pure quartz surface occurs mainly due to the electrostatic attraction, while, in the case of the hydrophobic surface, the contribution of hydrophobic interactions increases. The study of the layer deformability shows that, on the hydrophilic surfaces, the layer ages and its structure depends on the polymer solution concentration. On the modified surface, the deformation of even freshly formed layers is slight, which suggests that a denser layer is formed on the hydrophobic surface. In contrast to the hydrophilic surface, the polyelectrolyte is partly desorbed from the hydrophobic surface.  相似文献   

11.
Depending on the bulk composition, adsorption layers formed from mixed protein/surfactant solutions contain different amounts of protein. Clearly, increasing amounts of surfactant should decrease the amount of adsorbed proteins successively. However, due to the much larger adsorption energy, proteins are rather strongly bound to the interface and via competitive adsorption surfactants cannot easily displace proteins. A thermodynamic theory was developed recently which describes the composition of mixed protein/surfactant adsorption layers. This theory is based on models for the single compounds and allows a prognosis of the resulting mixed layers by using the characteristic parameters of the involved components. This thermodynamic theory serves also as the respective boundary condition for the dynamics of adsorption layers formed from mixed solutions and their dilational rheological behaviour. Based on experimental studies with milk proteins (β-casein and β-lactoglobulin) mixed with non-ionic (decyl and dodecyl dimethyl phosphine oxide) and ionic (sodium dodecyl sulphate and dodecyl trimethyl ammonium bromide) surfactants at the water/air and water/hexane interfaces, the potential of the theoretical tools is demonstrated.The displacement of pre-adsorbed proteins by subsequently added surfactant can be successfully studied by a special experimental technique based on a drop volume exchange. In this way the drop profile analysis can provide tensiometry and dilational rheology data (via drop oscillation experiments) for two adsorption routes — sequential adsorption of the single compounds in addition to the traditional simultaneous adsorption from a mixed solution. Complementary measurements of the surface shear rheology and the adsorption layer thickness via ellipsometry are added in order to support the proposed mechanisms drawn from tensiometry and dilational rheology, i.e. to show that the formation of mixed adsorption layer is based on a modification of the protein molecules via electrostatic (ionic) and/or hydrophobic interactions by the surfactant molecules and a competitive adsorption of the resulting complexes with the free, unbound surfactant. Under certain conditions, the properties of the sequentially formed layers differ from those formed simultaneously, which can be explained by the different locations of complex formation.  相似文献   

12.
Collagen (type I from calf skin) adsorption on polystyrene (PS) and plasma-oxidized polystyrene (PSox) was studied, using a quartz crystal microbalance with energy dissipation measurements (QCM-D) and atomic force microscopy (AFM) in tapping mode. Radio-labeled collagen was used to measure the adsorbed amount and the ability of adsorbed collagen to exchange with molecules in the solution. The results show that the collagen adlayer consists of two parts: a dense and thin sheet in which fibrils are formed (directly observed by AFM) and an overlying thick layer (up to 200 nm) containing protruding molecules or bundles which are in very low concentration but modify noticeably the local viscosity. The thickness and viscosity of the semi-liquid adlayer both increase with adsorption time and collagen concentration. Fibril formation near the surface also increases with time and collagen concentration and occurs more readily on PS compared to PSox. Radiochemical measurements show that this may be related to the larger mobility of molecules adsorbed on PS, presumably owing to a smaller number of binding points.  相似文献   

13.
Infrared external reflection (IER) spectra of sodium dodecyl sulfate (SDS) monolayers at the air-solution interface and infrared transmission spectra of the corresponding aqueous solutions were measured at various SDS concentrations and temperatures. A comparison between the spectra of adsorbed monolayers and bulk solutions revealed that the conformational order of the SDS alkyl-chain at the air-solution interface improved with increasing the SDS concentrations, up until the saturation adsorption, and that the conformational order of the adsorbed SDS monolayer was higher than those of monomers and micelles. In addition, below the Krafft point temperature, the adsorbed SDS was maintained in the liquid crystal state, while SDS in the bulk solution was in the crystalline state. Furthermore, the SDS adsorption density was evaluated based on the IER band intensities of the insoluble monolayer of tridecanoic acid with an identical alkyl chain length to SDS.  相似文献   

14.
15.
The adsorption behaviour of proteins and systems mixed with surfactants of different nature is described. In the absence of surfactants the proteins mainly adsorb in a diffusion controlled manner. Due to lack of quantitative models the experimental results are discussed partly qualitatively. There are different types of interaction between proteins and surfactant molecules. These interactions lead to protein/surfactant complexes the surface activity and conformation of which are different from those of the pure protein. Complexes formed with ionic surfactants via electrostatic interaction have usually a higher surface activity, which becomes evident from the more than additive surface pressure increase. The presence of only small amounts of ionic surfactants can significantly modify the structure of adsorbed proteins. With increasing amounts of ionic surfactants, however, an opposite effect is reached as due to hydrophobic interaction and the complexes become less surface active and can be displaced from the interface due to competitive adsorption. In the presence of non-ionic surfactants the adsorption layer is mainly formed by competitive adsorption between the compounds and the only interaction is of hydrophobic nature. Such complexes are typically less surface active than the pure protein. From a certain surfactant concentration of the interface is covered almost exclusively by the non-ionic surfactant. Mixed layers of proteins and lipids formed by penetration at the water/air or by competitive adsorption at the water/chloroform interface are formed such that at a certain pressure the components start to separate. Using Brewster angle microscopy in penetration experiments of proteins into lipid monolayers this interfacial separation can be visualised. A brief comparison of the protein adsorption at the water/air and water/n-tetradecane shows that the adsorbed amount at the water/oil interface is much stronger and the change in interfacial tension much larger than at the water/air interface. Also some experimental data on the dilational elasticity of proteins at both interfaces measured by a transient relaxation technique are discussed on the basis of the derived thermodynamic model. As a fast developing field of application the use of surface tensiometry and rheometry of mixed protein/surfactant mixed layers is demonstrated as a new tool in the diagnostics of various diseases and for monitoring the progress of therapies.  相似文献   

16.
Adsorption and spontaneous polymerization of head- or tail-type surface active monomers having long methylene chains on colloidal silica and δ-alumina were investigated. Both head-type and tail-type ammonium monomers on silica in chloroform or tetrahydrofuran had the maximum adsorption on the respective adsorption isotherm. Above the monomer concentration giving the maximum adsorption, it was observed that the monomer formed micelles or clusters in bulk solution with removal of adsorbed water molecules from the silica surface. At the monomer concentration giving the maximum adsorption, heating the silica suspension containing the monomer at 40°C or 60°C in tetrahydrofuran or chloroform solution resulted in spontaneous polymerization. The composite particles formed by polymerization were observed to have many spots consisting of polymer on the surface. Therefore, it is suggested that the monomers are concentrated by micelle-like aggregation on the silica surface and consecutively spontaneous polymerization takes place. Adsorption of an anion-type monomer having a carboxyl group on δ-alumina, which exhibited a positive ζ potential in neutral aqueous solution, was higher than that on colloidal silica, but did not spontaneously polymerize on alumina. Received: 13 June 1998 Accepted in revised form: 19 August 1998  相似文献   

17.
The strong electrostatic interactions at the oil–water interface between a small molecule, 5,10,15,20‐tetrakis(4‐sulfonatophenyl)porphyrin, H6TPPS, dissolved in water, and an amine terminated hydrophobic polymer dissolved in oil are shown to produce a supramolecular polymer surfactant (SPS) of H6TPPS at the interface with a binding energy that is sufficiently strong to allow an intermolecular aggregation of the supramolecular polymers. SPSs at the oil–water interface are confirmed by in situ real‐space atomic force microcopy imaging. The assemblies of these aggregates can jam at the interface, opening a novel route to kinetically trap the liquids in non‐equilibrium shapes. The elastic film, comprised of SPSs, wrinkles upon compression, providing a strategy to stabilize liquids in non‐equilibrium shapes.  相似文献   

18.
A theory has been developed for the adsorption of polyelectrolytes on charged interfaces from an aqueous salt solution. This adsorption is determined by the electrical charge density of the polyelectrolyte, the adsorption energy, the salt concentration, the molecular weight, solubility, flexibility, and concentration of polymer. The theory relates these parameters to the properties of the adsorbed polymer layer, i.e., the amount of polymer adsorbed, the fraction of the adsorbent interface covered, the fraction of the segments actually adsorbed on the interface versus the fraction of the segments in the dangling loops, the final surface charge density, and the thickness of the adsorbed layer. As polyelectrolyte adsorption should resemble nonionic polymer adsorption at high ionic strength of the solution or low charge density on the polymer, this work is an extension of the nonionic polymer adsorption theory to polyelectrolyte adsorption. The following effects are taken into account: (a) the conformational change upon adsorption of a coil in solution into a sequence of adsorbed trains interconnected by loops dangling in solution; (b) the interactions of the adsorbed trains with the interface and with each other; (c) the interaction of the dangling loops with the solvent; (d) the change in surface charge density of the adsorbent due to adsorption of charged trains and the accompanying changes in the electrical double layer which contains “small” ions as well as charged loops; (e) the (induced) dipole interaction of the adsorbed trains with the charged adsorbent interface. The theory is worked out for low potentials (Debye—Hückel approximation); in Appendix B an outline of a more complete treatment is given. The predicted adsorption isotherms have the experimentally observed high-affinity character. A relation between the adsorption energy, the surface charge density on the adsorbent, the degree of dissociation of the polymer, and the salt concentration predicts the conditions under which no adsorption will occur. For adsorbent and polymer carrying the same type of charge (both positive or both negative) the adsorption is predicted to decrease with increased charge density on polymer or adsorbent and to increase with salt concentration. If adsorbent and polymer carry different type charges, the adsorption as a function of the degree of dissociation, α, goes through a maximum at a relatively low value of α and, depending on the adsorption energy, an increase in the salt concentration can then increase or decrease the adsorption. At finite polymer concentration in solution the number of adsorbed segments and the fraction of the interface covered practically do not change with an increase in polymer concentration, whereas the total number of polymer molecules adsorbed increases slightly, as does the average fraction of segments in loops. The experimental results for polyelectrolyte adsorption have been reviewed in general and, as far as data are available, the predictions of the theory seem to follow the experimentally observed trends quite closely, except for the thickness of the adsorbed layer. This thickness is systematically overestimated by the theory and two reasons for this are given. The theoretical model implies a not too low ionic strength of the solution. Extrapolation of results to solutions of very low ionic strength is not warranted.  相似文献   

19.
Mixed protein–surfactant adsorption layers at liquid interfaces are described including the thermodynamic basis, the adsorption kinetics and the shear and dilational interfacial rheology. It is shown that due to the protrusion of hydrophobic protein parts into the oil phase the adsorption layers at the water–hexane interface are stronger anchored as compared to the water-air surface. Based on the different adsorption protocols, a sequential and a simultaneous scheme, the peculiarities of complexes between proteins and added surfactants are shown when formed in the solution bulk or at a liquid interface. The picture drawn from adsorption studies is supported by the findings of interfacial rheology.  相似文献   

20.
The interaction between the bile pigment bilirubin and sodium deoxycholate is studied in aqueous buffer solutions at pH 7.4. It is established that bilirubin forms strong complexes with deoxycholate trimers. The complexation constant is determined by spectrophotometry. The adsorption of bilirubin and sodium deoxycholate from their mixed solutions on the surface of a hydrophilic and two hydrophobic silica sorbents is investigated. It is shown that bilirubin is adsorbed on the surface of all these sorbents only in the free state. Sodium deoxycholate is adsorbed in the forms of monomers and trimers. The affinity of all adsorbed particles is higher for hydrophobic silica sorbents. The binding constants of bilirubin, as well as monomers and trimers of deoxycholate, with the surfaces of all examined sorbents are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号