首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Measurement of the a- and b-type rotational transitions of formyl chloride, HClCO, was extended up to J = 50 and ka = 5 ← 4 in the frequency range of 8 to 200 GHz. Accurate rotational parameters including the sextic centrifugal distortion constants were determined from the observed spectrum for the 35Cl and 37Cl species. The τ defect in the planarity relations of the quartic centrifugal distortion constants was found to be negligibly small. From the quartic centrifugal distortion constants and the previously reported fundamental vibrational frequencies, force constants of formyl chloride were calculated by assuming the Urey-Bradley force field.  相似文献   

2.
The microwave spectrum of CH3OD has been observed in the frequency region between 14 and 92 GHz. All the ground-state transitions with J ≤ 8 and J = 2 ← 1, a-type transitions in the excited torsional states (v = 1 and v = 2) have been observed. The spectrum has been analyzed and rotational constants, torsional constants, torsion-vibration-rotation interaction constants, and centrifugal distortion constants have been evaluated. The Stark effect measurements have been made and the dipole moment components have been determined as μa = 0.833 ± 0.008 D and μb = 1.488 ± 0.015 D.  相似文献   

3.
The rotational spectrum of vinyl fluoride up to J = 40 has been assigned and measured in the frequency region 8–37 GHz. Both a- and b-type transitions were observed. These measurements have been combined with those made in other frequency regions to calculate refined rotational constants and to obtain all quartic and some sextic centrifugal distortion constants. A comparison is made between the quartic centrifugal distortion constants measured here and those calculated from vibrational data.  相似文献   

4.
The microwave spectrum of 2-cycloheptene-1-one, an unsaturated cyclic ketone, has been studied in the regions 26.5–40 and 7.0–12.4 GHz. An analysis of the ground-state “a”-type transitions yielded the rotational constants (in MHz): A = 2997.27, B = 2049.24, C = 1399.76. The “a”-type transitions of an excited vibrational state were also assigned, giving A = 3000.51, B = 2046.65, C = 1398.88. The centrifugal distortion constants, DJ and DJK, were needed to fit the data adequately. A study of the Stark effect yielded the dipole moment components (in debye) μa = 3.63 ± 0.023 and μc = 0.882 ± 0.040. The μb component could not be determined from the Stark effect data. These data are used to discuss the molecular conformation of cycloheptene-1-one.  相似文献   

5.
The microwave spectrum of HNO has been observed and analyzed. Both a-type and b-type transitions have been measured. The rotational constants obtained are A = 553903.0 ± 2.7 MHz, B = 42308.52 ± 0.10 MHz, and C = 39169.46 ± 0.10 MHz. In the analysis of the spectrum, centrifugal distortion corrections are tentatively taken into account by using the centrifugal distortion constants determined by Dalby. The quadrupole coupling constants for nitrogen in HNO are determined to be χaa = 0.36 ± 0.56 MHz, χbb = ? 5.46 ± 0.30 MHz, and χcc = 5.10 ± 0.26 MHz. The dipole moment and its components determined from the Stark effect measurement are μtotal = 1.67 ± 0.03 D, μa = 1.03 ± 0.01 D, and μb = 1.31 ± 0.02 D. The microwave spectrum of DNO has been reanalyzed by taking into account the centrifugal distortion effect. The inertia defects for HNO and DNO have been calculated. The results are limited in precision by the lack of reliable force constants.  相似文献   

6.
The rotational spectra of the anti conformer of vinyl alcohol (ethenol, H2CCHOH) and its OD modification have been studied by microwave spectroscopy. The compounds have been generated by very-low-pressure pyrolyses of the appropriate isotopic species of 3-thietanol. In both cases the 25 measured μa- and μb-type transitions allowed the rotational constants and all five quartic centrifugal distortion constants to be determined. Stark effect measurements have yielded the electic dipole moment: μa = 0.547(2), μb = 1.702(1), and μ = 1.788(1) D. By relative intensity measurements it has been found that the vibrational ground state of the anti conformer lies 4.5±0.6 kJ mol?1 above the syn conformer. In addition, ab initio calculations at the 6–31G7 level have been performed to obtain the structure, relative energy, and dipole moment of both rotamers.  相似文献   

7.
Rotational spectra of quinoline and of isoquinoline have been observed in the centimeter- and millimeter-wave regions. The spectra were assigned on the basis of bands formed by high-J transitions, which were measured up to J″?128 and ν?234 GHz. Complementary measurements were also made on low-J, centimeter-wave spectra observed in supersonic expansion and with fully resolved nuclear quadrupole hyperfine structure. Accurate rotational, centrifugal distortion and hyperfine splitting constants for the ground states of both molecules are reported. The electric dipole moments for the two molecules were also determined from Stark effect measurements and are μa=0.14355(19), μb=2.0146(17), μtot=2.0197(17) D for quinoline, and μa=2.3602(21), μb=0.9051(14), μtot=2.5278(20) D for isoquinoline. The experimental observables were found to be rather accurately predicted by MP2/6-31G** ab initio calculations, and corresponding molecular geometries are also reported.  相似文献   

8.
The molecular rotational spectrum of 3-butynenitrile (3BN, propargyl cyanide), HCCCH2CN, has been investigated in the vibrational ground state. A total of 222 transitions up to J = 69 have been measured between 8 and 300 GHz. The Hamiltonian used for the spectral analysis was required to include all centrifugal terms of fourth and sixth orders and one term of eighth order in the angular momentum components in order to reproduce the transition frequencies within the experimental error. Significant values for the respective distortion coefficients could be determined. The molecular dipole moment components were calculated from measured Stark effect shifts as |μa| = (3.23 ± 0.05) D, |μb| = (2.34 ± 0.02) D; μtot = (3.99 ± 0.05) D.  相似文献   

9.
The microwave spectra of the ground state and three excited states of the most abundant species of phenyl isocyanate have been recorded between 8 and 40 GHz. From aR-type transitions the ground-state rotational constants were calculated. The A value showed clearly a tilt of the NCO group from the C2v axis. They yielded the r0-type parameters. A centrifugal distortion treatment confirmed the validity of the rigid rotor approximation. The dipole moment components μa and μb were derived from the field strength dependence of six Stark lobes of five transitions. The values found were μa = (2.50 ± 0.02) D, μb < 0.2 D. From relative intensity measurements, the lowest vibrational excitation energies were determined. We assigned the lowest one to the NCO group torsion. All aR-type transitions of excited states were found unsplit by the internal rotation of the NCO group. The weakness of the μb dipole moment component and of the overall spectrum intensity did not allow us to find μb-type transitions and so, no splitting was observed on the ground-state spectrum. An evaluation of the V2 high barrier is given.  相似文献   

10.
The rotational spectrum of 3-methylcyclopentanone has been observed in the frequency region from 18.0 to 26.5 GHz. Both a-type and b-type transitions in the ground vibrational state and a-type transitions in five excited states have been assigned. The ground state rotational constants are determined to be A = 5423.32 ± 0.18, B = 1949.51 ± 0.01, and C = 1529.59 ± 0.01 MHz. Analysis of the measured quadratic Stark effects gives the dipole moment components ∥μa∥ = 2.97 ± 0.02, ∥μb∥ = 1.00 ± 0.03, ∥μc∥ = 0.18 ± 0.06, and the total dipole moment ∥μt∥ = 3.14 ± 0.03 D. These data are consistent with a twisted-ring conformation with a methyl group in the equatorial position.  相似文献   

11.
The absorption spectrum of deuterated nitrous acid DONO in the region from 2350 to 3000 cm−1 has been recorded at a resolution of 0.003 cm−1 using a Fourier-transform spectrometer. For the first time, 1366 a- and b-type transitions in the υ1 fundamental band of trans-DONO and 741 b-type transitions in the υ1 fundamental band of cis-DONO have been assigned. Rotational and centrifugal distortion constants up to sextic order were determined for the v1 = 1 states of trans- and cis-DONO using non-linear least-squares calculations. Synthetic spectra calculated using the new rovibrational constants obtained for both species reproduce the observed spectra very well. In addition, the infrared transitions of this study were used, together with previously published pure rotational transitions, to determine improved rotational and centrifugal distortion constants of the ground states of trans- and cis-DONO.  相似文献   

12.
Rotational transitions of HNCO in the v4 = 1, v5 = 1, and v6 = 1 vibrational states have been measured. The assignment of the a-type qRK and qQ1 branches has been made with the help of a qualitative discussion of the vibration-rotation interactions. Effective rotational and centrifugal distortion constants have been determined precisely for each vibrational Ka-rotational state, up to Ka = 4 for the lowest excited state and Ka = 3 for the other two excited states. The Ka dependence of the effective rotational constants B and D was observed to be quite anomalous for some of the transitions because of the a-type Coriolis interactions and accidental b-type Coriolis resonances. From a discussion of the selection rules and the effect on B and D of the interactions, the first excited state of the out-of-plane vibration, ν6, has been assigned definitely to the second lowest excited vibrational state of HNCO.  相似文献   

13.
The rotational spectrum of cyclopropyl silane has been recorded in the region 9.0–35.0 GHz. Eighty-eight transitions of the ground vibrational state were measured and analyzed to give rotational constants and centrifugal distortion constants. The dipole moment was determined to be μa = 0.847(17)D, μc = 0.273(10)D, and μtot = 0.890(18)D. The rotational constants are consistent with a shortening of the CC bond length opposite to the silyl group. Since no splittings due to internal rotation were observed, a lower limit for the hindering potential of the internal rotation of the silyl group is V3 ≥ 1950cal/mole.  相似文献   

14.
The rotational spectrum of vinylarsine in the ground state has been studied in the range 7–320 GHz. The spectra of asynconformer and agaucheconformer have been unambiguously assigned on the basis of the existence of ab-type or ac-type spectrum. Rotational constants, quartic, and some sextic centrifugal distortion constants were derived. For thesynform, measurements of lowJaR0,1transitions in a pulsed-nozzle Fourier transform microwave spectrometer (FTMWS) enabled the determination of the diagonal elements of the quadrupole tensor, as well as two spin–rotation constants.Ab initiocalculations performed at the MP2 level using the 6-311++G(3df, 3pd) basis set reproduced experimental rotational constants within 0.2%.  相似文献   

15.
The microwave and millimeter wave spectra of isothiocyanic acid, HNCS, in the ground vibrational state have been investigated in the frequency region 8–300 GHz. The a-type R-branch transitions have been assigned up to J = 25 and Ka = 4, and the a-type qQ1 branch transitions up to J = 45. No b-type transitions could be identified in the frequency region covered. The far infrared data reported by Krakow, Lord, and Neely [J. Mol. Spectrosc., 27, 148 (1968)] were combined with our millimeter wave data in order to determine reliable spectroscopic constants. The rotational Hamiltonian, Watson's formalism with S reduction, has been extended empirically to higher order to facilitate the fitting of the large centrifugal distortion effects. The obtained constants are:
A = 1357.3 GHz; B = 5883.4627 MHz; C = 5845.6113 MHz; DJ = 1.19393 kHz; DJK = ?1025.37 kHz; DK = 51.57 GHz; d1 = ?13.781 Hz; d2 = ?4.59 Hz.
The 14N quadrupole coupling constant has also been determined: χaa = 1.114 MHz.  相似文献   

16.
The microwave spectrum of 3,4-epoxy-1-butene has been studied in the region 26.5–40 GHz. For the ground-state molecule, 170 lines have been assigned up to J = 34. From these the rotational constants and the centrifugal distortion constants were determined by least-squares fitting. The rotational constants are (in MHz): A = 17367.284 ± 0.011, B = 3138.186 ± 0.004, C = 3043.697 ± 0.004. The dipole moment has been determined from the Stark effect as (in Debye): μa = 0.72 ± 0.01, μb = 1.688 ± 0.003, μc = 0.39 ± 0.02, μ = 1.875 ± 0.005. The rotational constants and dipole moment components indicate that the assigned conformer is the s-trans form. A rotational assignment has also been made for the first excited state of the torsional mode. The fundamental frequency of the torsional mode has been estimated as 142 ± 20 cm?1 from relative intensity measurement.  相似文献   

17.
Microwave measurements in the interval from 6 to 133 GHz, consisting of 444 rotational transitions in the vibrational ground state of hydrazine with J ≤ 31 and Ka ≤ 6 were fit to an effective rotational Hamiltonian containing 9 asymmetric rotor constants, 14 NH2 inversion parameters, and 1 internal rotation parameter, with an overall standard deviation of the fit of 0.40 MHz. This set of parameters contains: (i) the three rotational constants; (ii) tunneling splitting constants for NH2 inversion at one end of the molecule, for NH2 inversion at both ends of the molecule, and for internal rotation through the trans barrier; (iii) two K-type doubling constants affecting the K = 1 levels; (iv) an a-type Coriolis interaction with matrix elements linear in K; and (v) various centrifugal distortion corrections to the above parameters. A consistent group theoretical formalism was used to label the energy levels and to select terms in the phenomenological rotational Hamiltonian. The Hamiltonian matrix, which is set up in a tunneling basis set, is of dimension 16×16 and contains only ΔKa = 0 matrix elements, asymmetric rotor effects being taken into account on the diagonal by terms from a Polo expansion in bn. Hyperfine splittings and barrier heights are not discussed.  相似文献   

18.
New molecular structural data is presented for a cyanide terminated oligomer of polytetrafluoroethene. The target molecule, CF3–(CF2)6–CN, has been seeded within a pulsed supersonic expansion of argon. The result of this action is to cool the species to rotational temperatures below 4 K. Within this state, the pure rotational spectrum of the oligomer has been recorded using two types of Fourier transform microwave spectroscopy. A total of 111 transitions have been identified involving rotational J levels between 6 and 40. Only a- and b-type transitions were observed. The spectrum has been analyzed using a Hamiltonian containing all three rotational constants and one centrifugal distortion constant, DJ. The experimental spectroscopic constants have been used to develop an effective molecular structure by scaling the quantum chemical calculated structure. The data shows that the seven carbon perfluorinated chain for the isolated oligomer twists ≈104°. This compares well to the C7F13-twist of ≈97° anticipated from the X-ray structure of phase II polytetrafluoroethene.  相似文献   

19.
Nine microwave ground-state spectra of seven isotopes of ortho-xylene have been measured between 9 and 29 GHz. From the rotational constants a partial substitution structure could be calculated. The dipole moment was determined from Stark-lobe shifts, μa = 0.640 ± 0.005 D. The high-J transitions were found split into multiplets due to the interaction of methyl top internal rotation with the overall molecular rotation; doublets through quintets with the correct nuclear spin weight dependence could be observed according to group-theoretical expectations. A weighted average, V3 = 1490 ± 50 cal/mole, was derived for the internal rotation barrier neglecting top-top coupling and presumably small, higher than threefold barrier terms. The methyl groups both stagger the bond between the two benzene carbon atoms which carry them.  相似文献   

20.
The ν1 fundamental band of FNO has been studied by the technique of CO laser Stark spectroscopy. The band origin was determined to be 1844.099 cm?1, and values for the rotational and centrifugal distortion constants of the (100) excited vibrational state were found. The ground state dipole moment components were determined to be μa = 1.690 and μb = 0.370 D, for a total dipole moment of 1.730 D, and a relatively large reduction (5%) was found in μ for the (100) state relative to the ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号