首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Wu B  Zhang G  Shuang S  Choi MM 《Talanta》2004,64(2):546-553
A glucose biosensor using an enzyme-immobilized eggshell membrane and oxygen electrode for glucose determination has been fabricated. Glucose oxidase was covalently immobilized on an eggshell membrane with glutaraldehyde as a cross-linking agent. The glucose biosensor was fabricated by positioning the enzyme-immobilized eggshell membrane on the surface of a dissolved oxygen sensor. The detection scheme was based on the depletion of dissolved oxygen content upon exposure to glucose solution and the decrease in the oxygen level was monitored and related to the glucose concentration. The effect of glutaraldehyde concentration, pH, phosphate buffer concentration and temperature on the response of the glucose biosensor has been studied in detail. Common matrix interferents such as ethanol, d-fructose, citric acid, sodium benzoate, sucrose and l-ascorbic acid did not give significant interference. The resulting sensor exhibited a fast response (100 s), high sensitivity (8.3409 mg L−1 oxygen depletion/mmol L−1 glucose) and good storage stability (85.2% of its initial sensitivity after 4 months). The linear response is 1.0×10−5 to 1.3×10−3 mol L−1 glucose. The glucose content in real samples such as commercial glucose injection preparations and wines was determined, and the results were comparable to the values obtained from a commercial glucose assay kit based on a spectrophotometric method.  相似文献   

2.
This paper describes the optimization and validation of an analytical methodology for the determination of losartan potassium in capsules by HPLC using 25-1 fractional factorial and Doehlert designs. This multivariate approach allows a considerable improvement in chromatographic performance using fewer experiments, without additional cost for columns or other equipment. The HPLC method utilized potassium phosphate buffer (pH 6.2; 58 mmol L−1)-acetonitrile (65:35, v/v) as the mobile phase, pumped at a flow rate of 1.0 mL min−1. An octylsilane column (100 mm × 4.6 mm i.d., 5 μm) maintained at 35 °C was used as the stationary phase. UV detection was performed at 254 nm. The method was validated according to the ICH guidelines, showing accuracy, precision (intra-day relative standard deviation (R.S.D.) and inter-day R.S.D values <2.0%), selectivity, robustness and linearity (r = 0.9998) over a concentration range from 30 to 70 mg L−1 of losartan potassium. The limits of detection and quantification were 0.114 and 0.420 mg L−1, respectively. The validated method may be used to quantify losartan potassium in capsules and to determine the stability of this drug.  相似文献   

3.
A screen-printed amperometric biosensor based on carbon ink double bulk-modified with MnO2 as a mediator and glucose oxidase as a biocomponent was investigated for its ability to serve as a detector for bonded glucose in different compounds, such as cellobiose, saccharose, (-)-4-nitrophenyl-β-d-glucopyranoside, as well as in beer samples by flow-injection analysis (FIA). The biosensor could be operated under physiological conditions (0.1 M phosphate buffer, pH 7.5) and exhibited good reproducibility and stability. Bonded glucose was released with glucosidase in solution, and the free glucose was detected with the modified screen-printed electrode (SPE). The release of glucose by the aid of glucosidase from cellobiose, saccharose and (-)-4-nitrophenyl-β-d-glucopyranoside in solution showed that stoichiometric quantities of free glucose could be monitored in all three cases.The linear range of the amperometric response of the biosensor in the FIA-mode flow rate 0.2 mL min−1, injection volume 0.25 mL, operation potential 0.48 V versus Ag/AgCl) extends from 11 to 13,900 μmol L−1 glucose in free form. The limit of detection (3σ) is 1 μmol L−1 glucose. A concentration of 100 μmol L−1 yields a relative standard deviation of approximately 7% with five injections. These values correspond to the same concentrations of bonded glucose supposed that it is liberated quantitatively (incubation for 2 h with glucosidase).Bonded glucose could be determined in beer samples using the same assay. The results corresponded very well with the reference procedure.  相似文献   

4.
Boni AC  Wong A  Dutra RA  Sotomayor Mdel P 《Talanta》2011,85(4):2067-2073
A biomimetic sensor for the determination of dipyrone was prepared by modifying carbon paste with cobalt phthalocyanine (CoPc), and used as an amperometric detector in a flow injection analysis (FIA) system. The results of cyclic voltammetry experiments suggested that CoPc behaved as a biomimetic catalyst in the electrocatalytic oxidation of dipyrone, which involved the transfer of one electron. The optimized FIA procedure employed a flow rate of 1.5 mL min−1, a 75 μL sample loop, a 0.1 mol L−1 phosphate buffer carrier solution at pH 7.0 and amperometric detection at a potential of 0.3 V vs. Ag/AgCl. Under these conditions, the proposed method showed a linear response for dipyrone concentrations in the range 5.0 × 10−6-6.3 × 10−3 mol L−1. Selectivity and interference studies were carried out in order to validate the system for use with pharmaceutical and environmental samples. In addition to being environmentally friendly, the proposed method is a sensitive and selective analytical tool for the determination of dipyrone.  相似文献   

5.
The usefulness of the secondary line at 252.744 nm and the approach of side pixel registration were evaluated for the development of a method for sequential multi-element determination of Cu, Fe, Mn and Zn in soil extracts by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). The influence of side pixel registration on the sensitivity and linearity was investigated by measuring at wings (248.325, 248.323, 248.321, 248.329, and 248.332 nm) of the main line for Fe at 248.327 nm. For the secondary line at 252.744 nm or side pixel registration at 248.325 nm, main lines for Cu (324.754 nm), Mn (279.482 nm) and Zn (213.875 nm), sample flow-rate of 5.0 mL min−1 and calibration by matrix matching, analytical curves in the 0.2-1.0 mg L−1 Cu, 1.0-20.0 mg L−1 Fe, 0.2-2.0 mg L−1 Mn, 0.1-1.0 mg L−1 Zn ranges were obtained with linear correlations better than 0.998. The proposed method was applied to seven soil samples and two soil reference materials (IAC 277; IAC 280). Results were in agreement at a 95% confidence level (paired t-test) with reference values. Recoveries of analytes added to soil extracts containing 0.15 and 0.30 mg L−1 Cu, 7.0 and 14 mg L−1 Fe, 0.60 and 1.20 mg L−1 Mn, 0.07 and 0.15 mg L−1 Zn, varied within the 94-99, 92-98, 93-101, and 93-103% intervals, respectively. The relative standard deviations (n = 12) were 2.7% (Cu), 1.4% (Fe - 252.744 nm), 5.7% (Fe - 248.325 nm), 3.2% (Mn) and 2.8% (Zn) for an extract containing 0.35 mg L−1 Cu, 14 mg L−1 Fe, 1.1 mg L−1 Mn and 0.12 mg L−1 Zn. Detection limits were 5.4 μg L−1 Cu, 55 μg L−1 Fe (252.744 nm), 147 μg L−1 Fe (248.325 nm), 3.0 μg L−1 Mn and 4.2 μg L−1 Zn.  相似文献   

6.
The absorbance characteristics and influential factors on these characteristics for a liquid-phase gas sensor, which is based on gas–permeable liquid core waveguides (LCWs), are studied from theoretical and experimental viewpoints in this paper. According to theory, it is predicted that absorbance is proportional to the analyte concentration, sampling time, analyte diffusion coefficient, and geometric factor of this device when the depletion layer of the analyte is ignored. The experimental results are in agreement with the theoretical hypothesis. According to the experimental results, absorbance is time-dependent and increasing linearly over time after the requisite response time with a linear correlation coefficient r2 > 0.999. In the linear region, the rate of absorbance change (RAC) indicates improved linearity with sample concentration and a relative higher sensitivity than instantaneous absorbance does. By using a core liquid that is more affinitive to the analyte, reducing wall thickness and the inner diameter of the tubing, or increasing sample flow rate limitedly, the response time can be decreased and the sensitivity can be increased. However, increasing the LCW length can only enhance sensitivity and has no effect on response time. For liquid phase detection, there is a maximum flow rate, and the absorbance will decrease beyond the stated limit. Under experimental conditions, hexane as the LCW core solvent, a tubing wall thickness of 0.1 mm, a length of 10 cm, and a flow rate of 12 mL min−1, the detection results for the aqueous benzene sample demonstrate a response time of 4 min. Additionally, the standard curve for the RAC versus concentration is RAC = 0.0267 c + 0.0351 (AU min−1), with r2 = 0.9922 within concentrations of 0.5–3.0 mg L−1. The relative error for 0.5 mg L−1 benzene (n = 6) is 7.4 ± 3.7%, and the LOD is 0.04 mg L−1. This research can provide theoretical and practical guides for liquid–phase gas sensor design and development based on a gas-permeable Teflon AF 2400 LCW.  相似文献   

7.
A highly sensitive flow analysis system has been developed for the trace determination of reactive phosphate in natural waters, which uses a polymer inclusion membrane (PIM) with Aliquat 336 as the carrier for on-line analyte separation and preconcentration. The system operates under flow injection (FI) and continuous flow (CF) conditions. Under optimal FI conditions the system is characterised by a linear concentration range between 0.5 and 1000 μg L−1 P, a sampling rate of 10 h−1, a limit of detection of 0.5 μg L−1 P and RSDs of 3.2% (n = 10, 100 μg L−1) and 7.7% (n = 10, 10 μg L−1). Under CF conditions with 10 min stop-flow time and sample solution flow rate of 1.32 mL min−1 the flow system offers a limit of detection of 0.04 μg L−1 P, a sampling rate of 5 h−1 and an RSD of 3.4% (n = 5, 2.0 μg L−1). Interference studies revealed that anions commonly found in natural waters did not interfere when in excess of at least one order of magnitude. The flow system, operating under CF conditions, was successfully applied to the analysis of natural water samples containing concentrations of phosphate in the low μg L−1 P range, using the multipoint standard addition method.  相似文献   

8.
The present paper describes a direct procedure for the determination of catechin and epicatechin concentrations in red wines employing reverse-phase high performance liquid chromatography (RP HPLC) and detection by fluorescence. The method was performed using a sample volume of 10 µL without dilution. The separation process employed a Chromolith performance RP-18e (100 mm × 4.6 mm) column, and the mobile phase was composed of solvent A: methanol-acetic acid-water (90:8:2) and solvent B: water-acetic acid-methanol (10:2:88) at a flow rate of 1.0 mL min− 1. Linearity was observed in the range of 1 to 30 mg L− 1, with limits of detection and quantification of 0.27 and 0.89 mg L− 1, respectively, for catechin and 0.33 and 1.01 mg L− 1, respectively, for epicatechin. The precisions estimated by the relative standard deviation were 3.34 and 1.09% for catechin concentrations of 0.5 and 20 mg L− 1 respectively and 2.82 and 0.49% for epicatechin concentrations of 0.5 and 20 mg L− 1, respectively. The evaluation of the accuracy was done using an addition/recovery assay. Four wine samples were used, and the recoveries varied from 105 to 108% for catechin and from 97 to 119% for epicatechin. The method was applied to the analysis of red wine samples collected from the São Francisco region, Bahia State, Brazil. Nine samples were analyzed, and the catechin and epicatechin concentrations varied from 7.51 to 73.20 and from 5.08 to 43.32 mg L− 1, respectively. The concentrations found agree with data reported in the literature.  相似文献   

9.
The present work describes the development of an amperometric sensor based on hemin immobilized on a titanium oxide modified silica toward detection of artemisinin (ARN) in neutral medium at an applied potential of −0.5 V vs. Ag/AgCl. The sensor presented its best performance in 0.1 mol L−1 phosphate buffer solution, at pH 7.0. After optimizing the operational conditions, the sensor provided a linear response range for ARN reduction from 50 nmol L−1 to 1000 nmol L−1 with a sensitivity, detection and quantification limits of 24.66 A L mol−1, 15 nmol L−1 and 52 nmol L−1, respectively. The proposed sensor showed a stable response for at least 80 successive determinations. The repeatability of the measurements with the sensor and the preparation of a series of electrodes, evaluated in terms of relative standard deviation, were 4.1% and 5.0%, respectively, for n = 10. The developed sensor was applied for the determination of ARN in the crude extracts of A. vulgaris L and the average recovery for these samples is 101.4 (± 3.1)%.  相似文献   

10.
Thanyarat Chuesaard 《Talanta》2009,79(4):1181-1187
An interfacing has been developed to connect a spectrophotometer with a personal computer and used as a readout system for development of a simple, rapid and sensitive reversed flow injection (rFI) procedure for chlorate determination. The method is based on the oxidation of indigo carmine by chlorate ions in an acidic solution (dil. HCl) leading to the decrease in absorbance at 610 nm. The decrease in absorbance is directly related to the chlorate concentration present in the sample solutions. Optimum conditions for chlorate were examined. A linear calibration graph over the range of 0.1-0.5 mg L−1 chlorate was established with the regression equation of Y = 104.5X + 1.0, r2 = 0.9961 (n = 6). The detection limit (3σ) of 0.03 mg L−1, the limit of quantitation (10σ) of 0.10 mg L−1 and the RSD of 3.2% for 0.3 mg L−1 chlorate (n = 11) together with a sample throughput of 92 h−1 were obtained. The recovery of the added chlorate in spiked water samples was 98.5 ± 3.1%. Major interferences for chlorate determination were found to be BrO3, ClO2, ClO and IO3 which were overcome by using SO32− (as Na2SO3) as masking agent. The method has been successfully applied for the determination of chlorate in spiked water samples with the minimum reagent consumption of 14.0 mL h−1. Good agreement between the proposed rFIA and the reference methods was found verified by Student's t-test at 95% confidence level.  相似文献   

11.
In this work, a fully automated flow system exploiting the advantages of the association of multi-pumping, multicommutation, binary sampling and merging zones, to accomplish the sequential determination of copper in serum and urine by flame atomic absorption spectrometry, is described. The developed flow system allowed multiple tasks, such as serum samples preparation (samples and standard solutions viscosity adjustment), serum copper (SCu) measurement, urine copper (UCu) pre-concentration and its subsequent elution and measurement, to be carried out sequentially. The implemented flow manifold presented a modular configuration consisting on two quasi-independent modules, each one accountable for a specific sample manipulation and whose combined operation under computer control enabled the determination of copper in a wide concentrations range.Once optimised and with a sample consumption of about 0.250 mL of serum and 7 mL of urine, the developed flow system allowed linear calibration plots up to 5 mg L−1 with a detection limit of 0.035 mg L−1 for SCu and linear calibration plots up to 300 μg L−1 with a detection limit of 0.67 μg L−1 for UCu. The sampling rate varied according to the module employed and was about 360 determinations h−1 (SCu module), 12 determinations h−1 (UCu module) or 24 determinations h−1 (12 urine and 12 serum samples; UCu and SCu modules simultaneously). Repeatability studies (R.S.D.%, n = 10) showed good precision for UCu at concentrations of 25 μg L−1 (2.54%), 50 μg L−1 (0.90%) and 100 μg L−1 (1.62%) as well as for SCu at concentrations of 0.25 mg L−1 (8.11%), 1 mg L−1 (3.11%) and 5 mg L−1 (0.90%). A comparative evaluation showed a good agreement between the results obtained in the analysis of UCu and SCu (n = 18) by both the developed methodology and the reference procedures. Accuracy was further evaluated by means of the analysis of reference samples (Seronorm™ Trace Elements Urine and Seronorm™ Trace Elements Serum) and the obtained results complied with the certified values.  相似文献   

12.
A multi-pumping flow system (MPFS) for the spectrophotometric determination of dissolved orthophosphate and dissolved organic phosphorus in wastewater samples is proposed. The determination of orthophosphate is based on the vanadomolybdate method. In-line ultraviolet photo-oxidation is employed to mineralise organic phosphorus to orthophosphate prior to detection. A solenoid valve allows the deviation of the flow towards the UV-lamp to carry out the determination of organic phosphorus.Calibration was found to be linear up to 20 mg P L−1, with a detection limit (3sb/S) of 0.08 mg P L−1, an injection throughput of 75 injections h−1 and a repeatability (R.S.D.) of 0.6% for the direct determination of orthophosphate. On the other hand, calibration graphs were linear up to 40 mg P L−1, with a detection limit (3sb/S) of 0.5 mg P L−1, an injection throughput of 11 injections h−1 and a repeatability (R.S.D.) inferior to 2.3% for the procedures involving UV photo-oxidation.  相似文献   

13.
The development of a highly sensitive sensor for oxygen is proposed using a glassy carbon (GC) electrode modified with alternated layers of iron(II) tetrasulfonated phthalocyanine (FeTsPc) and iron(III) tetra-(N-methyl-pyridyl)-porphyrin (FeT4MPyP). The modified electrode showed excellent catalytic activity for the oxygen reduction. The reduction potential of the oxygen was shifted about 330 mV toward less negative values with this modified electrode, presenting a peak current much higher than those observed on a bare GC electrode. Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the oxygen reduction reaction involves 4 electrons with a heterogenous rate constant (kobs) of 3 × 105 mol−1 L s−1. A linear response range from 0.2 up to 6.4 mg L−1, with a sensitivity of 4.12 μA L mg−1 (or 20.65 μA cm−2 L mg−1) and a detection limit of 0.06 mg L−1 were obtained with this sensor. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation (R.S.D.) was 2.0% for 10 measurements of a solution of 6.4 mg L−1 oxygen. The sensor was applied to determine oxygen in pond and tap water samples showing to be a promising tool for this purpose.  相似文献   

14.
A new biochemical oxygen demand (BOD) sensing method employing a double-mediator (DM) system coupled with ferricyanide and a lipophilic mediator, menadione and the eukaryote Saccharomyces cerevisiae has been developed. In this study, a stirred micro-batch-type microbial sensor with a 560 μL volume and a two-electrode system was used. The chronamperometric response of this sensor had a linear response between 1 μM and 10 mM hexacyanoferrate(II) (r2 = 0.9995, 14 points, n = 3, average of relative standard deviation and R.S.D.av = 1.3%). Next, the optimum conditions for BOD estimation by the DM system (BODDM) were investigated and the findings revealed that the concentration of ethanol, used to dissolve menadione, influenced the sensor response and a relationship between the sensor output and glucose glutamic acid concentration was obtained over a range of 6.6-220 mg O2 L−1 (five points, n = 3, R.S.D.av 6.6%) when using a reaction mixture incubated for 15 min. Subsequently, the characterization of this sensor was studied. The sensor responses to 14 pure organic substances were compared with the conventional BOD5 method and other biosensor methods. Similar results with the BOD biosensor system using Trichosporon cutaneum were obtained. In addition, the influence of chloride ion, artificial seawater and heavy metal ions on the sensor response was investigated. A slight influence of 20.0 g L−1 chloride ion and artificial seawater (18.4 g L−1 Cl) was observed. Thus, the possibility of BOD determination for seawater was suggested in this study. In addition, no influence of the heavy metal ions (1.0 mg L−1 Fe3+, Cu2+, Mn2+, Cr3+ and Zn2+) was observed. Real sample measurements using both river water and seawater were performed and compared with those obtained from the BOD5 method. Finally, stable responses were obtained for 14 days when the yeast suspension was stored at 4 °C (response reduction, 93%; R.S.D. for 6 testing days, 9.1%).  相似文献   

15.
Poachanee Norfun 《Talanta》2010,82(1):202-207
A reverse flow injection analysis (rFIA) spectrophotometric method has been developed for the determination of aluminium(III). The method was based on the reaction of Al(III), quercetin and cetyltrimethylammonium bromide (CTAB), yielding a yellow colored complex in an acetate buffer medium (pH 5.5) with absorption maximum at 428 nm. The rFIA parameters that influence the FIA peak height have been optimized in order to obtain the best sensitivity and minimum reagent consumption. A linear relationship between the relative peak height and Al(III) concentrations were obtained over the concentration range of 0.02-0.50 mg L−1 with a correlation coefficient of 0.9998. The limit of detection (LOD, defined as 3σ) and limit of quantification (LOQ, defined as 10σ) were 0.007 and 0.024 mg L−1, respectively. The repeatability was 1.10% (n = 11) for 0.2 mg L−1 Al(III). The proposed method was applied to the determination of Al(III) in tap water samples with a sampling rate of 60 h−1. Results obtained were in good agreement with those obtained by the official ICP-MS method at the 95% confidence level.  相似文献   

16.
Potassium formate was extracted from airport storm water runoff by headspace solid-phase microextraction (HS-SPME) and analyzed by GC–MS. Formate was transformed to formic acid by adding phosphoric acid. Subsequently, formic acid was derivatized to methyl formate by adding methanol. Using sodium [2H]formate (formate-d) as an internal standard, the relative standard deviation of the peak area ratio of formate (m/z 60) and formate-d (m/z 61) was 0.6% at a concentration of 208.5 mg L−1. Calibration was linear in the range of 0.5–208.5 mg L−1. The detection limit calculated considering the blank value was 0.176 mg L−1. The mean concentration of potassium formate in airport storm water runoff collected after surface de-icing operations was 86.9 mg L−1 (n = 11) with concentrations ranging from 15.1 mg L−1 to 228.6 mg L−1.  相似文献   

17.
The consumption of ethanol is known to increase the likelihood of oral cancer. In addition, there has been a growing concern about possible association between long term use of ethanol-containing mouthwashes and oral cancer. Acetaldehyde, known to be a carcinogen, is the first metabolite of ethanol and it can be produced in the oral cavity after consumption or exposure to ethanol. This paper reports on the development of a gas-diffusion flow injection method for the online determination of salivary acetaldehyde by its colour reaction with 3-methyl-2-benzothiazolinone hydrazone (MBTH) and ferric chloride. Acetaldehyde samples and standards (80 μL) were injected into the donor stream containing NaCl from which acetaldehyde diffused through the hydrophobic Teflon membrane of the gas-diffusion cell into the acceptor stream containing the two reagents mentioned above. The resultant intense green coloured dye was monitored spectrophotometrically at 600 nm. Under the optimum working conditions the method is characterized by a sampling rate of 9 h−1, a linear calibration range of 0.5–15 mg L−1 (absorbance = 5.40 × 10−2 [acetaldehyde, mg L−1], R2 = 0.998), a relative standard deviation (RSD) of 1.90% (n = 10, acetaldehyde concentration of 2.5 mg L−1), and a limit of detection (LOD) of 12.3 μg L−1. The LOD and sampling rate of the proposed method are superior to those of the conventional gas chromatographic (GC) method (LOD = 93.0 μg L−1 and sampling rate = 4 h−1). The reliability of the proposed method was illustrated by the fact that spiked with acetaldehyde saliva samples yielded excellent recoveries (96.6–101.9%), comparable to those obtained by GC (96.4–102.3%) and there was no statistically significant difference at the 95% confidence level between the two methods when non-spiked saliva samples were analysed.  相似文献   

18.
The design and construction of a highly selective voltammetric sensor for metronidazole by using a molecularly imprinted polymer (MIP) as recognition element were introduced. A metronidazole selective MIP and a nonimprinted polymer (NIP) were synthesized and then incorporated in the carbon paste electrodes (CPEs). The sensor was applied for metronidazole determination using cathodic stripping voltammetric method. The MIP-CP electrode showed very high recognition ability in comparison to NIP-CPE. Some parameters affecting the sensor response were optimized and then the calibration curve was plotted. Two dynamic linear ranges of 5.64 × 10−5 to 2.63 × 10−3 mg L−1 and 2.63 × 10−3 to 7.69 × 10−2 mg L−1 were obtained. The detection limit of the sensor was calculated as 3.59 × 10−5 mg L−1. This sensor was used successfully for metronidazole determination in biological fluids.  相似文献   

19.
A novel method for the non-derivatization liquid chromatographic determination of metals (potassium, aluminium, calcium and magnesium) and organic compounds (ascorbate and aspartate) was developed and validated based on evaporative light scattering detection (ELSD). Separation of calcium, magnesium and aluminium was achieved by the cation exchange column Dionex CS-14 and an aqueous TFA mobile phase according to the following time program: 0-6 min TFA 0.96 mL L−1, 6-7 min linear gradient from TFA 0.96-6.4 mL L−1. Separation of potassium, magnesium and aspartate was achieved by the lipophilic C18 Waters Spherisorb column and isocratic aqueous 0.2 mL L−1 TFA mobile phase. Separation of sodium, magnesium, ascorbate and citrate was also achieved by the C18 analytical column, according to the following elution program: 0-2.5 min aqueous nonafluoropentanoic acid (NFPA) 0.5 mL L−1; 2.5-3.5 min linear gradient from 0.5 mL L−1 NFPA to 1.0 mL L−1 TFA. In all cases, evaporation temperature was 70 °C, pressure of the nebulizing gas (nitrogen) 3.5 bar, gain 11 and the flow rate 1.0 mL min−1. Resolution among calcium and magnesium was 1.8, while for all other separations was ≥3.2. Double logarithmic calibration curves were obtained within various ranges from 3-24 to 34-132 μg mL−1, and with good correlation (r > 0.996). Asymmetry factor ranged from 0.9 to 1.9 and limit of detection from 1.3 (magnesium) to 17 μg mL−1 (ascorbate).The developed method was applied for the assay of potassium, magnesium, calcium, aluminium, aspartate and ascorbate in pharmaceuticals and food-supplements. The accuracy of the method was evaluated using spiked samples (%recovery 95-105%, %R.S.D. < 2) and the absence of constant or proportional errors was confirmed by dilution experiments.  相似文献   

20.
A new automated spectrophotometric method for the determination of total sulfite in white and red wines is reported. The assay is based on the reaction of o-phthalaldehyde (OPA) and ammonium chloride with the analyte in basic medium under SI conditions. Upon on-line alkalization with NaOH, a blue product is formed having an absorption maximum at 630 nm. The parameters affecting the reaction - temperature, pH, ionic strength, amount concentration and volume of OPA, amount concentration of ammonium chloride, flow rate and reaction coil length - and the gas-diffusion process - sample and HCl volumes, length of mixing coil, donor flow rate - were studied. The proposed method was validated in terms of linearity (1-40 mg L−1, r = 0.9997), limit of detection (cL = 0.3 mg L−1) and quantitation (cQ = 1.0 mg L−1), precision (sr = 2.2% at 20 mg L−1 sulfite, n = 12) and selectivity. The applicability of the analytical procedure was evaluated by analyzing white and red wine samples, while the accuracy as expressed by recovery experiments ranged between 96% and 106%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号