首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.  相似文献   

2.
Considerable efforts have been made to utilize agricultural and forest residues as biomass feedstock for the production of second-generation bioethanol as an alternative fuel. Fermentation utilizing strains of Zymomonas mobilis and the use of simultaneous saccharification and fermentation (SSF) process has been proposed. Statistical experimental design was used to optimize the conditions of SSF, evaluating solid content, enzymatic load, and cell concentration. The optimum conditions were found to be solid content (30%), enzymatic load (25 filter paper units/g), and cell concentration (4 g/L), resulting in a maximum ethanol concentration of 60 g/L and a volumetric productivity of 1.5 g L?1?h?1.  相似文献   

3.
Hexanoic acid production by a bacterium using sucrose as an economic carbon source was studied under conditions in which hexanoic acid was continuously extracted by liquid–liquid extraction. Megasphaera elsdenii NCIMB 702410, selected from five M. elsdenii strains, produced 4.69 g l?1 hexanoic acid in a basal medium containing sucrose. Production increased to 8.19 g l?1 when the medium was supplemented by 5 g l?1 sodium butyrate. A biphasic liquid–liquid extraction system with 10 % (v/v) alamine 336 in oleyl alcohol as a solvent was evaluated in a continuous stirred-tank reactor held at pH 6. Over 90 % (w/w) of the hexanoic acid in a 0.5 M aqueous solution was transferred to the extraction solvent within 10 h. Cell growth was not significantly inhibited by direct contact of the fermentation broth with the extraction solvent. The system produced 28.42 g l?1 of hexanoic acid from 54.85 g l?1 of sucrose during 144 h of culture, and 26.52 and 1.90 g l?1 of hexanoic acid was accumulated in the extraction solvent and the aqueous fermentation broth, respectively. The productivity and yield of hexanoic acid were 0.20 g l?1 h?1 and 0.50 g g?1 sucrose, respectively.  相似文献   

4.
In this study, we have used ultraviolet (UV) and γ-ray induction to get a catabolite repression resistant and thermotolerant mutant with enhanced ethanol production along with optimization of sugar concentration and temperature of fermentation. Classical mutagenesis in two consecutive cycles of UV- and γ-ray-induced mutations evolved one best catabolite-resistant and thermotolerant mutant Saccharomyces cerevisiae MLD10 which showed improved ethanol yield (0.48?±?0.02 g g?1), theoretical yield (93?±?3 %), and extracellular invertase productivity (1,430?±?50 IU l?1 h?1), respectively, when fermenting 180 g sugars l?1 in molasses medium at 43 °C in 300 m3 working volume fermenter. Ethanol production was highly dependent on invertase production. Enthalpy (ΔH*) (32.27 kJ M?1) and entropy (ΔS*) (?202.88 J M?1 K?1) values at 43 °C by the mutant MLD10 were significantly lower than those of β-glucosidase production by a thermophilic mutant derivative of Thermomyces lanuginosus. These results confirmed the enhanced production of ethanol and invertase by this mutant derivative. These studies proved that mutant was significantly improved for ethanol production and was thermostable in nature. Lower fermentation time for ethanol production and maintenance of ethanol production rates (3.1 g l?1 h?1) at higher temperature (43 °C) by this mutant could decrease the overall cost of fermentation process and increase the quality of ethanol production.  相似文献   

5.
The glucoamylase from Aspergillus niger, immobilized into poly(vinylalcohol) hydrogel lens-shaped capsules LentiKats®, was used for simultaneous saccharification and fermentation (SSF) with Zymomonas mobilis in free form. This system was stable in both the repeated batch and continuous mode of SSF. The microorganism was found to adsorb on the capsules with immobilized enzyme. This increased the ethanol productivity of the repeated batch system with 5% w/v of immobilized glucoamylase almost 2.1 times (7.2 g l?1 h?1) compared to free enzyme–free microorganism system (3.5 g l?1 h?1). The continuous SSF with the immobilized glucoamylase (11.5% w/v) tested for 15 days had productivity 10 g l?1 h?1, which is comparable to continuous experiments on semi-defined glucose medium (10 g l?1 h?1). These two systems were stable in both glucoamylase activity and microorganism productivity.  相似文献   

6.
Ethanol production from lignocellulosic biomass depends on simultaneous saccharification of cellulose to glucose by fungal cellulases and fermentation of glucose to ethanol by microbial biocatalysts (SSF). The cost of cellulase enzymes represents a significant challenge for the commercial conversion of lignocellulosic biomass into renewable chemicals such as ethanol and monomers for plastics. The cellulase concentration for optimum SSF of crystalline cellulose with fungal enzymes and a moderate thermophile, Bacillus coagulans, was determined to be about 7.5 FPU g?1 cellulose. This is about three times lower than the amount of cellulase required for SSF with Saccharomyces cerevisiae, Zymomonas mobilis, or Lactococcus lactis subsp. lactis whose growth and fermentation temperature optimum is significantly lower than that of the fungal cellulase activity. In addition, B. coagulans also converted about 80% of the theoretical yield of products from 40 g/L of crystalline cellulose in about 48 h of SSF with 10 FPU g?1 cellulose while yeast, during the same period, only produced about 50% of the highest yield produced at end of 7 days of SSF. These results show that a match in the temperature optima for cellulase activity and fermentation is essential for decreasing the cost of cellulase in cellulosic ethanol production.  相似文献   

7.
The paper deals with the exploitation of Ipomoea carnea as a feedstock for the production of bioethanol. Dilute acid pretreatment under optimum conditions (3 %H2SO4, 120 °C for 45 min) produced 17.68 g L?1 sugars along with 1.02 g L?1 phenolics and 1.13 g L?1 furans. A combination of overliming and activated charcoal adsorption facilitated the removal of 91.9 % furans and 94.7 % phenolics from acid hydrolysate. The pretreated biomass was further treated with a mixture of sodium sulphite and sodium chlorite and, a maximum lignin removal of 81.6 % was achieved. The enzymatic saccharification of delignified biomass resulted in 79.4 % saccharification with a corresponding sugar yield of 753.21 mg g?1. Equal volume of enzymatic hydrolysate and acid hydrolysate were mixed and used for fermentation with a hybrid yeast strain RPRT90. Fermentation of mixed detoxified hydrolysate at 30 °C for 28 h produced ethanol with a yield of 0.461 g g?1. A comparable ethanol yield (0.414 g g?1) was achieved using a mixture of enzymatic hydrolysate and undetoxified acid hydrolysate. Thus, I. carnea biomass has been demonstrated to be a potential feedstock for bioethanol production, and the use of hybrid yeast may pave the way to produce bioethanol from this biomass.  相似文献   

8.
The aim of this study was to examine the impact of divalent copper, iron, manganese, and zinc ions on the production of erythritol from glycerol by Yarrowia lipolytica and their effect on the activity of erythrose reductase. No inhibitory effect of the examined minerals on yeast growth was observed in the study. Supplementation with MnSO4·7H2O (25 mg l?1) increased erythritol production by Y. lipolytica by 14.5 %. In the bioreactor culture with manganese ion addition, 47.1 g l?1 of erythritol was produced from 100.0 g l?1 of glycerol, which corresponded to volumetric productivity of 0.87 g l?1 h?1. The addition of Mn2+ enhanced the intracellular activity of erythrose reductase up to 24.9 U g?1 of dry weight of biomass (DW), hence, about 1.3 times more than in the control.  相似文献   

9.
In this work, the use of organic fraction from municipal solid waste (MSW) as substrate for ethanol production based on enzymatic hydrolysis was evaluated. MSW was subjected to a thermal pretreatment (active hygienization) at 160?°C from 5 to 50 min. The organic fiber obtained after 30 min was used as substrate in a simultaneous saccharification and fermentation (SSF) and fed-batch SSF process using cellulases and amylases. In a fed-batch mode with 25% (w/w) substrate loading, final ethanol concentration of 30 g/L was achieved (60% of theoretical). In these conditions, more than 160 L of ethanol per ton of dry matter could be produced from the organic fraction of MSW.  相似文献   

10.
The metabolism of residual glycerol from biodiesel synthesis by Klebsiella pneumoniae BLh-1 was investigated in this study. Batch and fed-batch cultivations were performed in bioreactors under anaerobic and oxygen limitation conditions. Results of batch cultivations showed that the main product was 1,3-propanediol (1,3-PD) in both conditions, although the higher yields and productivities (0.46 mol mol?1 glycerol and 1.22 g?L?1?h?1, respectively) were obtained under anaerobic condition. Large amounts of ethanol were also produced under batch anaerobic condition, peaking at 12.30 g?L?1. Batch cultivations under oxygen limitation were characterized by faster growth kinetics, with higher biomass production but lower conversions of glycerol into 1,3-PD, with yields and productivities of 0.33 mol mol?1 glycerol and 0.99 g?L?1?h?1, respectively. The fed-batch cultivations were carried out in order to investigate the effects of feeding of raw glycerol on cells. Fed-batch under anaerobiosis showed that 1,3-PD and ethanol concentrations increased with the feeding rate, with maximal productions of 26.12 and 19.2 g?L?1, respectively. The oxygen limitation conditions diverted the bacterium metabolism to an elevated lactic acid formation, reaching 59 g?L?1 in higher feeding rates of glycerol, but lowering the production of ethanol.  相似文献   

11.
Studies have been conducted on selecting yeast strains for use in fermentation for ethanol production to improve the performance of industrial plants and decrease production costs. In this paper, we study alcoholic fermentation in a fed-batch process using a Saccharomyces cerevisiae yeast strain with flocculant characteristics. Central composite design (CCD) was used to determine the optimal combination of the variables involved, with the sucrose concentration of 170 g/L, a cellular concentration in the inoculum of 40 % (v/v), and a filling time of 6 h, which resulted in a 92.20 % yield relative to the theoretical maximum yield, a productivity of 6.01 g/L h and a residual sucrose concentration of 44.33 g/L. With some changes in the process such as recirculation of medium during the fermentation process and increase in cellular concentration in the inoculum after use of the CCD was possible to reduce the residual sucrose concentration to 2.8 g/L in 9 h of fermentation and increase yield and productivity for 92.75 % and 9.26 g/L h, respectively. A model was developed to describe the inhibition of alcoholic fermentation kinetics by the substrate and the product. The maximum specific growth rate was 0.103 h?1, with K I and K s values of 109.86 and 30.24 g/L, respectively. The experimental results from the fed-batch reactor show a good fit with the proposed model, resulting in a maximum growth rate of 0.080 h?1.  相似文献   

12.
Batch cultivation of Azadirachta indica hairy roots was carried out in different liquid-phase bioreactor configurations (stirred-tank, bubble column, bubble column with polypropylene basket, and polyurethane foam disc as root supports) to investigate possible scale-up of the A. indica hairy root culture for in vitro production of the biopesticide azadirachtin. The hairy roots failed to grow in the conventional bioreactor designs (stirred tank and bubble column). However, modified bubble column reactor (with polyurethane foam as root support) configuration facilitated high-density culture of A. indica hairy roots with a biomass production of 9.2 g l?1dry weight and azadirachtin yield of 3.2 mg g?1 leading to a volumetric productivity of azadirachtin as 1.14 mg l?1 day?1. The antifeedant activity in the hairy roots was also evaluated by no choice feeding tests with known concentrations of the hairy root powder and its solvent extract separately on the desert locust Schistocerca gregaria. The hairy root powder and its solvent extract demonstrated a high level of antifeedant activity (with an antifeedant index of 97 % at a concentration of 2 % w/v and 83 % at a concentration of 0.05 % (w/v), respectively, in ethanol).  相似文献   

13.
In this study, a method for the efficient production of dehydroepiandrosterone (DHEA) from phytosterols in a vegetable oil/aqueous two-phase system by Mycobacterium sp. was developed. After the 3-hydroxyl group of phytosterols was protected, they could be converted into DHEA with high yield and productivity by Mycobacterium sp. NRRL B-3683. In a shake flask biotransformation, 15.05 g l?1 of DHEA and a DHEA yield of 85.39% (mol mol?1) were attained after 7 days with an initial substrate concentration of 25 g l?1. When biotransformation was carried out in a 30-l stirred bioreactor with 25 g l?1 substrate, the DHEA concentration and yield was 16.33 g l?1 and 92.65% (mol mol?1) after 7 days, respectively. The results of this study suggest that inexpensive phytosterols could be utilized for the efficient production of DHEA.  相似文献   

14.
An Escherichia coli-engineered bacterium with cis-epoxysuccinate hydrolase (ESH) activity was used to catalyze the stereospecific hydrolysis of cis-epoxysuccinic acid to l-(+)-tartaric acid. The effect of the substrate composition on the production efficiency of l-(+)-tartaric acid was investigated. Based on the sodium-type homogeneous substrate system, a heterogeneous substrate system, composed of 1.2 M sodium-type substrate and 1.8 M calcium-type substrate, was designed to improve ESH catalytic efficiency. After process optimization, a catalytic efficiency of 9.37?×?10?3 g U?1 h?1 was obtained with fed-batch mode in the heterogeneous substrate system, about a twofold increase compared to the traditional bioconversion process with Nocardia tartaricans cells. The scale-up tests were carried out in a 15-m3 stirred tank reactor, which indicated that the heterogeneous substrate system had great application prospect for the l-(+)-tartaric acid industrial production.  相似文献   

15.
The effects of aeration and agitation on the properties and production of xanthan gum from crude glycerin biodiesel (CGB) by Xanthomonas campestris mangiferaeindicae 2103 were investigated and optimized using a response surface methodology. The xanthan gum was produced from CGB in a bioreactor at 28 °C for 120 h. Optimization procedures indicated that 0.97 vvm at 497.76 rpm resulted in a xanthan gum production of 5.59 g L?1 and 1.05 vvm at 484.75 rpm maximized the biomass to 3.26 g L?1. Moreover, the combination of 1.05 vvm at 499.40 rpm maximized the viscosity of xanthan at 0.5 % (m/v), 25 °C, and 25 s?1 (255.40 mPa s). The other responses did not generate predictive models. Low agitation contributed to the increase of xanthan gum production, biomass, viscosity, molecular mass, and the pyruvic acid concentration. Increases in the agitation contributed to the formation of xanthan gum with high mannose concentration. Decreases in the aeration contributed to the xanthan gum production and the formation of biopolymer with high mannose and glucose concentrations. Increases in aeration contributed to increased biomass, viscosity, and formation of xanthan gum with greater resistance to thermal degradation. Overall, aeration and agitation of CGB fermentation significantly influenced the production of xanthan gum and its properties.  相似文献   

16.
Xylose effective utilization is crucial for production of bulk chemicals from low-cost lignocellulosic substrates. In this study, an efficient l-lactate production process from xylose by a mutant Bacillus coagulans NL-CC-17 was demonstrated. The nutritional requirements for l-lactate production by B. coagulans NL-CC-17 were optimized statistically in shake flask fermentations. Corn steep liquor powder and yeast exact were identified as the most significant factors by the two-level Plackett–Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors, and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform batch fermentation in a 3-l bioreactor. A maximum of 90.29 g l?1? l-lactic acid was obtained from 100 g l?1 xylose in 120 h. When using corn stove prehydrolysates as substrates, 23.49 g l?1? l-lactic acid was obtained in 36 h and the yield was 83.09 %.  相似文献   

17.
Corynebacterium glutamicum wild type lacks the ability to utilize the xylose fractions of lignocellulosic hydrolysates. In the present work, we constructed a xylose metabolic pathway in C. glutamicum by heterologous expression of the xylA and xylB genes coming from Escherichia coli. Dilute-acid hydrolysates of corn cobs containing xylose and glucose were used as a substrate for succinic acid production by recombinant C. glutamicum NC-2. The results indicated that the available activated charcoal pretreatment in dilute-acid hydrolysates of corn cobs could be able to overcome the inhibitory effect in succinic acid production. Succinic acid was shown to be efficiently produced from corn cob hydrolysates (55 g l?1 xylose and 4 g l?1 glucose) under oxygen deprivation with addition of sodium carbonate. Succinic acid concentration reached 40.8 g l?1 with a yield of 0.69 g g?1 total sugars within 48 h. It was the first report of succinic acid production from corn cob hydrolysates by metabolically engineered C. glutamicum. This study suggested that dilute-acid hydrolysates of corn cobs may be an alternative substrate for the efficient production of succinic acid by C. glutamicum.  相似文献   

18.
Bacillus licheniformis TISTR 1010 was used for glutamic acid-independent production of poly-γ-glutamic acid (γ-PGA). A fed-batch production strategy was developed involving feedings of glucose, citric acid, and ammonium chloride at specified stages of the fermentation. With the dissolved oxygen concentration controlled at ≥50% of air saturation and the pH controlled at ~7.4, the fed-batch operation at 37 °C afforded a peak γ-PGA concentration of 39.9 ± 0.3 g L?1 with a productivity of 0.926 ± 0.006 g L?1 h?1. The observed productivity was nearly threefold greater than previously reported for glutamic acid-independent production using the strain TISTR 1010. The molecular weight of γ-PGA was in the approximate range of 60 to 135 kDa.  相似文献   

19.
The present study involved strategies for enhancement in in vitro azadirachtin (commercially used biopesticide) production by hairy root cultivation of Azadirachta indica. Improvement in the azadirachtin production via triggering its biosynthetic pathway in plant cells was carried out by the exogenous addition of precursors and elicitors in the growth medium. Among the different abiotic stress inducers (Ag+, Hg+2, Co+2, Cu+2) and signal molecules (methyl jasmonate and salicylic acid) tested, salicylic acid at 15 mg l?1 of concentration was found to enhance the azadirachtin yield in the hairy roots to the maximum (up to 4.95 mg g?1). Similarly, among the different biotic elicitors tested (filter-sterilized fungal culture filtrates of Phoma herbarium, Alternaria alternata, Myrothecium sp., Fusarium solani, Curvularia lunata, and Sclerotium rolfsii; yeast extract; and yeast extract carbohydrate fraction), addition of filter-sterilized fungal culture filtrate of C. lunata (1 %?v/v) resulted in maximum azadirachtin yield enhancement in hairy root biomass (up to 7.1 mg g?1) with respect to the control (3.3 mg g?1). Among all the biosynthetic precursors studied (sodium acetate, cholesterol, squalene, isopentynyl pyrophosphate, mavalonic acid lactone, and geranyl pyrophosphate), the overall azadirachtin production (70.42 mg l?1 in 25 days) was found to be the highest with cholesterol (50 mg l?1) addition as an indirect precursor in the medium.  相似文献   

20.
The main goal of this work was the production and characterization of a novel invertase activity from Zygosaccharomyces bailii strain Talf1 for further application to biodesulfurization (BDS) in order to expand the exploitable alternative carbon sources to renewable sucrose-rich feedstock. The maximum invertase activity (163 U ml?1) was achieved after 7 days of Z. bailii strain Talf1 cultivation at pH 5.5–6.0, 25 °C, and 150 rpm in Yeast Malt Broth with 25 % Jerusalem artichoke pulp as inducer substrate. The optimum pH and temperature for the crude enzyme activity were 5.5 and 50 °C, respectively, and moreover, high stability was observed at 30 °C for pH 5.5–6.5. The application of Talf1 crude invertase extract (1 %) to a BDS process by Gordonia alkanivorans strain 1B at 30 °C and pH 7.5 was carried out through a simultaneous saccharification and fermentation (SSF) approach in which 10 g l?1 sucrose and 250 μM dibenzothiophene were used as sole carbon and sulfur sources, respectively. Growth and desulfurization profiles were evaluated and compared with those of BDS without invertase addition. Despite its lower stability at pH 7.5 (loss of activity within 24 h), Talf1 invertase was able to catalyze the full hydrolysis of 10 g l?1 sucrose in culture medium into invert sugar, contributing to a faster uptake of the monosaccharides by strain 1B during BDS. In SSF approach, the desulfurizing bacterium increased its μmax from 0.035 to 0.070 h?1 and attained a 2-hydroxybiphenyl productivity of 5.80 μM/h in about 3 days instead of 7 days, corresponding to an improvement of 2.6-fold in relation to the productivity obtained in BDS process without invertase addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号