首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The solute–solvent interactions of some phenol derivatives were investigated potentiometrically in 0–60 % (v/v) ethanol–water mixtures. The acidity constants values were correlated with either macroscopic parameters such as molar fraction, permittivity and the solvating ability or microscopic parameters, such as the Kamlet–Taft solvatochromic parameters. Moreover, it is demonstrated that the pK a values in any ethanol–water mixtures are linearly related to the pK a values of the phenols in pure water. The slope and intercept parameters of the linear correlations are related with the mole fraction of ethanol. These equations permit accurate calculation of the pK a values of the studied phenols at any ethanol–water composition.  相似文献   

2.
Precise thermodynamic ionization constants K for 3-nitrophenol, 3,4-dichlorophenol, and 4-cyanophenol have been obtained in 1,4-dioxane-water mixtures (0–70% volume fraction in dioxane) at 25°C using a potentiometric method. The same information for another twelve cationic, neutral, and anionic phenols were taken from the literature. Three different methods were used to study the effects of the solvents on the ionization constants: one involves a single polarity parameter, E T(30); the next involves the Kamlet–Taft multiparametric method; and the last involves the preferential solvation model. The pK values follow the preferential solvation model, but the parameters obtained are highly correlated. Using the data for the phenol molecule as reference, a linear correlation between ΔpK and E T(30) has been used to develop a new method of obtaining pK values for any binary solvent composition, with only the pK in water known. The pK(s) values correlate with the molecular parameters for the dipolarity/polarizability of the solvent π* and its hydrogen-bond donor ability α. The preferential solvation parameter, f 12/1, correlates with the parameter for the hydrogen-bond donor ability of the solvent. All the phenols follow Hammett's equation and the reaction constants have been calculated for the different water–dioxane mixtures.  相似文献   

3.
The dissociation constants of several acids (perchloric, hydrochloric, phosphoric, acetic and benzoic acids) and of some sodium salts (chloride, acetate and benzoate) have been conductometrically determined in tetrahydrofuran/water mixtures up to a 90% of tetrahydrofuran in volume. The results demonstrate that conductometry can be successfully applied to determine the dissociation constants of salts and moderately weak and strong acids in the studied mixtures. The dissociation constants of the acids and some bases taken from the literature have been fitted to solvent composition through a previously derived equation, which is based on a preferential solvation model. The fitting parameters obtained allow calculation of the dissociation constant for any solvent composition inside the applicability solvent composition range. From the pK value, the pH of any buffered solution, such as those used in liquid chromatography, can be calculated for the particular tetrahydrofuran/ water composition of interest. Appreciable ion-pairing for sodium salts and strong acids has been observed for tetrahydrofuran contents higher than 60% in volume. Therefore, the accurate calculation of the pH values of buffers in tetrahydrofuran-rich solutions must take into account the pK values of the acid and salt.  相似文献   

4.
The knowledge of the acid-base equilibria in water-solvent mixtures of both common buffers and analytes is necessary in order to predict their retention as function of pH, solvent composition and temperature. This paper describes the effect of temperature on acid-base equilibria in methanol-water solvent mixtures commonly used as HPLC mobile phases. We measured the delta-correction parameter (delta = sw pH - ss pH = Ej - log sw(gamma)oh) between two pH scales: pH measured in the solvent concerned and referred to the same standard state, ss pH, and the pH measured in that solvent mixture but referred to water as standard state, sw pH, for several methanol compositions in the temperature range of 20-50 degrees C. These determinations suggest that the delta-term depends only on composition of the mixture and on temperature. In water-rich mixtures, for which methanol is below 40% (w/w), delta-term seems to be independent of temperature, within the experimental uncertainties, whereas for methanol content larger than 50% (w/w) the delta-correction decreases as temperature increases. We have attributed this decrease to a large increase in the medium effect when mixtures have more than 50% methanol. The pKa of five weak electrolytes of different chemical nature in 50% methanol-water at 20-50 degrees C are presented: the effect of temperature on pKa was large for amines, pyridine and phenol, but almost no dependence was found for benzoic acid. This indicates that buffers can play a critical role in affecting retention and selectivity in HPLC at temperatures far from 25 degrees C, particularlyfor co-eluted solutes.  相似文献   

5.
The relationship, delta values, between the two rigorous pH scales, S(S)pH (pH measured in a methanol-water mixture and referred to the same mixture as standard state) and S(W)pH (pH measured in a methanol-water mixture but referred to water as standard state), in several methanol-water mixtures was determined (delta = S(W)pH-S(S)pH). Delta values were measured using a combined glass electrode and a wide set of buffer solutions. The results are consistent with those obtained with the hydrogen electrode. This confirms the aptness of the glass electrode to achieve rigorous pH measurements in methanol-water mixtures. An equation that relates delta and composition of methanol-water mixtures, and allows delta computation at any composition by interpolation, is proposed. Therefore, S(S)pH can be achieved from the experimental S(W)pH value and delta at any mobile phase composition. S(S)pH (or S(W)pH) values are related to the chromatographic retention of ionizable compounds through their thermodynamic acid-base constants in the methanol-water mixture used as mobile phase. These relationships were tested for the retention variation of several acids and bases with the pH of the mobile phase. Therefore, the optimization of the mobile phase acidity for any analyte can be easily reached avoiding the disturbances observed when W(W)pH is used.  相似文献   

6.
The chromatographic characteristics of 58 phenols on Rexyn 102 and Dowex 50-X4 thin layers in both the acidic and sodium salt forms have been studied, using elution with water, water-alcohol mixtures and aqueous salt solutions at different pH values. The influence of the percentage of alcohol, the pH and the ionic strength on the chromatographic behaviour of these phenols was investigated. The validity of the relationships among the RF values, the pH of the eluent and the pKa of the phenol has been verified on Dowex 50-X4 (Na+) thin layers. It has been shown that from the RFac, RFalk and pKa values of the different phenols, it is possible to predict their behaviour over the whole pH range and therefore to select the best conditions for their chromatographic separation.  相似文献   

7.
A simple linear approach to estimate the aqueous pKa of compounds sparingly soluble in water, mainly drugs, from solely one pKa value determined in any methanol/water mixture is evaluated. The parameters (slope and intercept) of the linear relationships are related to the solvent composition and can be easily calculated according to the acidic or basic functional group of the compound. The method has been tested using the available literature data for phenols, aliphatic carboxylic acids, benzoic acid derivatives, both ortho and non-ortho substituted, amines and imidazole derivatives. The study involves the whole range of solvent composition and about one hundred compounds which show a wide variety of aqueous pKa, from 1.3 to 12.4. The differences between calculated and previously published aqueous pKa values are less of 0.2 pK units. Consistent values are obtained whatever the composition of methanol/water mixture employed in the experimental measurements. The results support the usefulness of the tested method as a very simple approach to get reliable aqueous pKa values for sparingly soluble drugs.  相似文献   

8.
The influence of pH and solvent composition of acetonitrile-water mobile phases on the retention of acids and bases on a polymeric stationary phase is studied. Very good relationships between retention and mobile phase pH are obtained if the pH is measured in the proper pH scale. The fit of retention to pH for a particular solvent composition provides the pKa values of the equilibria between the different acid-base species and the retention parameters of these species at this solvent composition. Several models are tested that relate these parameters to solvent composition and properties in order to propose a general model to predict retention for any mobile phase pH and composition.  相似文献   

9.
10.
Single-molecule studies that allow to compute pKa values, proton affinities (gas-phase acidity/basicity) and the electrostatic energy of solvation have been performed for a heterogeneous set of 26 organic compounds. Quantum mechanical density functional theory (DFT) using the Becke-half&half and B3LYP functionals on optimized molecular geometries have been carried out to investigate the energetics of gas-phase protonation. The electrostatic contribution to the solvation energies of protonated and deprotonated compounds were calculated by solving the Poisson equation using atomic charges generated by fitting the electrostatic potential derived from the molecular wave functions in vacuum. The combination of gas-phase and electrostatic solvation energies by means of the thermodynamic cycle enabled us to compute pKa values for the 26 compounds, which cover six distinct chemical groups (carboxylic acids, benzoic acids, phenols, imides, pyridines and imidazoles). The computational procedure for determining pKa values is accurate and transferable with a root-mean-square deviation of 0.53 and 0.57 pKa units and a maximum error of 1.0 pKa and 1.3 pKa units for Becke-half&half and B3LYP DFT functionals, respectively.  相似文献   

11.
The second-order rate constants for the hydrolysis of nitrophenyl esters catalysed by a number of folded designed polypeptides have been determined, and 1900-fold rate enhancements over those of the 4-methylimidazole-catalysed reactions have been observed. The rate enhancements are much larger than those expected from the pKa depression of the nucleophilic His residues alone. Kinetic solvent isotope effects were observed at pH values lower than the pKa values of the leaving groups and suggests that general-acid catalysis contributes in the pH range where the leaving group is predominantly protonated. In contrast, no isotope effects were observed at pH values above the pKa of the leaving group. A Hammett rho value of 1.4 has been determined for the peptide-catalysed hydrolysis reaction by variation of the substituents of the leaving phenol. The corresponding values for the imidazole-catalysed reaction is 0.8 and for phenol dissociation is 2.2. There is therefore, very approximately, half a negative charge localised on the phenolate oxygen in the transition state in agreement with the conclusion that transition-state hydrogen-bond formation may contribute to the observed catalysis. The elucidation at a molecular level of the principles that control cooperativity in the biocatalysed ester-hydrolysis reaction represents the first step towards a level of understanding of the concept of cooperativity that may eventually allow us to design tailor-made enzymes for chemical reactions not catalysed by nature.  相似文献   

12.
A review about the influence of mobile phase acid-base equilibria on the liquid chromatography retention of protolytic analytes with acid-base properties is presented. The general equations that relate retention to mobile phase pH are derived and the different procedures to measure the pH of the mobile phase are explained. These procedures lead to different pH scales and the relationships between these scales are presented. IUPAC rules for nomenclature of the different pH are also presented. Proposed literature buffers for pH standardization in chromatographic mobile phases are reviewed too. Since relationships between analyte retention and mobile phase pH depends also on the pKa value of the analyte, the solute pKa data in water-organic solvent mixtures more commonly used as chromatographic mobile phase are also reviewed. The solvent properties that produce variation of the pKa values with solvent composition are discussed. Chromatographic examples of the results obtained with the different procedures for pH measurement are presented too. Application to the determination of aqueous pKa values from chromatographic retention data is also critically discussed.  相似文献   

13.
14.
Density functional theory calculations have been preformed on a series of the hydrogen-bonded fluorophenol-ammonia and bromophenol-ammonia complexes. Intermolecular and intramolecular properties, particularly those related to hydrogen bonding, have been carefully analyzed. Several properties, such as the bond length and stretching frequency of the hydroxyl group, the hydrogen bond length and binding energy, are shown to be highly correlated with each other and are linearly correlated with known experimental pKa values of the halogenated phenols. The linear correlations have been used to predict the pKa values of all fluorophenols and bromophenols in the series. The predicted pKa values are shown to be consistent from different molecular properties and are in good agreement with available experimental values. This study suggests that calculated molecular properties of hydrogen-bonded complexes allow the effective and systematic prediction of pKa values for a large range of organic acids using the established linear correlations.  相似文献   

15.
用凝固点降低法测量了对甲酚、间甲酚、邻甲酚、2,4-二甲酚、2,6-二甲酚以及对甲酚+间甲酚、对甲酚+邻甲酚、间甲酚+邻甲酚、2,4-二甲酚+2,6-二甲酚的1:1摩尔比混合物等为溶质, 溶剂为苯或对二甲苯的活度系数, 用Wiehe-Bagley型的连续缔合模型对数据进行了处理, 得到了各种酚的自缔合常效K_A. 在同一溶剂中, K_A依下列顺序减小: 对甲酚>间甲酚>邻甲酚; 2,4-二甲酚>2,6-二甲酚. 各混合酚的表观K_A 介于两种纯酚的K_A之间.  相似文献   

16.
To develop a new solvent-impregnated resin system for the removal of phenols from water the complex formation of triisobutylphosphine sulfide (TIBPS), tributylphosphate (TBP), and tri-n-octylphosphine oxide (TOPO) with a series of phenols (phenol, thiophenol, 3-chlorophenol, 3,5-dichlorophenol, 4-cyanophenol, and pentachlorophenol) was studied. The investigation of complex formation between the extractants and the phenols in the solvent toluene was carried out using liquid-liquid extraction, isothermal titration calorimetry (ITC), and quantum chemical modeling (B3LYP/6-311+G(d,p)//B3LYP/6-311G(d,p) and MP2/6-311++G(2d,2p)//B3LYP/6-311G(d,p)). The equilibrium constant (binding affinity, Kchem), enthalpy of complex formation (DeltaH), and stoichiometry (N) were directly measured with ITC, and the entropy of complexation (DeltaS) was derived from these results. A first screening of K chem toward phenol revealed a very high binding affinity for TOPO, and very low binding affinities for the other extractants. Modeling results showed that although 1:1 complexes were formed, the TIBPS and TBP do not form strong hydrogen bonds. Therefore, in the remainder of the research only TOPO was considered. Kchem of TOPO for the phenols in toluene increased from 1,000 to 10,000 M(-1) in the order phenol < pentachlorophenol < 3-chlorophenol < 4-cyanophenol approximately 3,5-dichlorophenol (in line with their pKa values, except for pentachlorophenol) in the absence of water, while the stoichiometric ratio remained 1:1. In water-saturated toluene, the binding affinities are lower due to co-complexation of water with the active site of the extractant. The increase in binding affinity for TOPO in the phenol series was confirmed by a detailed ab initio study, in which Delta H was calculated to range from -10.7 kcal/mol for phenol to -13.4 kcal/mol for 4-cyanophenol. Pentachlorophenol was found to behave quite differently, showing a DeltaH value of -10.5 kcal/mol. In addition, these calculations confirm the formation of 1:1 H-bonded complexes.  相似文献   

17.
The solvatochromic parameters (ET(N), normalized polarity parameter; pi*, dipolarity/polarizability; beta, hydrogen-bond acceptor basicity; alpha, hydrogen-bond donor acidity) were determined for binary solvent mixtures of 1-(1-butyl)-3-methylimidazolium tetrafluoroborate ([bmim]BF4) with water, methanol, and ethanol at 25 degrees C over the whole range of mole fractions. In nonaqueous solutions, the value of the mixture increases with mole the fraction of [bmim]BF4 and then decreases gradually to the value of pure [bmim]BF4. Positive deviation from ideal behavior was observed for the solvent parameters ET(N), pi*, and alpha, whereas the deviation of the beta parameter is negative. The applicability of the combined nearly ideal binary solvent/Redlich-Kister equation for the correlation of various solvatochromic parameters with solvent composition was proved too for the first time. This equation provides a simple computational model to correlate and/or predict various solvatochromic parameters for many binary solvent systems. The correlation between the calculated and the experimental values of various parameters was in accordance with this model. Solute-solvent and solvent-solvent interactions have been applied for interpretation of the results.  相似文献   

18.
The linear-solvent strength (LSS) model of gradient elution has been applied to estimate parameters of lipophilicity and acidity of a series of drugs and model chemicals. Apparent pKa values and log kw values for individual analytes were determined in 2-3 gradient runs. The first experiment (or first two experiments) uses a wide-range organic modifier gradient with pH chosen for suppressed ionization of the analyte. The result of this experiment allows an estimate of contents of organic modifier of the mobile phase (%B) providing the required retention coefficient, k, for the non-ionized analyte. The following experiment is carried out with the latter %B and a pH-gradient of the aqueous component of the eluent that is sufficient to overlap the possible pKa-value of the analyte. The initial pH of the buffer used to make the mobile phase is selected to insure that the analyte is in non-ionized form. The resulting retention time allows an estimate of PKa in a solvent of the selected %B. At the same time, estimates of log kw can also be obtained. The log kw parameter obtained from gradient HPLC by the approach proposed correlated well with the corresponding value obtained by standard procedure of extrapolation of retention data determined in a series of isocratic measurements. Correlation between log kw and the reference parameter of lipophilicity, log P, was very good for a series of test analytes and satisfactory for a structurally diverse series of drugs. The approach supported with specific detection procedures can be recommended for fast screening of lipophilicity of individual components of complex mixtures like those produced by combinatorial chemistry. The values of pKa obtained in a study were found to correlate with the literature pKa data determined in water for a set of aniline derivatives studied. In case of a series of drugs the correlation was less than moderate if the general procedure of pKa determination was applied.  相似文献   

19.
The absolute pKa values of 24 representative amine compounds, including cocaine, nicotine, 10 neurotransmitters, and 12 anilines, in aqueous solution were calculated by performing first-principles electronic structure calculations that account for the solvent effects using four different solvation models, i.e., the surface and volume polarization for electrostatic interaction (SVPE) model, the standard polarizable continuum model (PCM), the integral equation formalism for the polarizable continuum model (IEFPCM), and the conductor-like screening solvation model (COSMO). Within the examined computational methods, the calculations using the SVPE model lead to the absolute pKa values with the smallest root-mean-square-deviation (rmsd) value (1.18). When the SVPE model was replaced by the PCM, IEFPCM, and COSMO, the rmsd value of the calculated absolute pKa values became 3.21, 2.72, and 3.08, respectively. All types of calculated pKa values linearly correlate with the experimental pKa values very well. With the empirical corrections using the linear correlation relationships, the theoretical pKa values are much closer to the corresponding experimental data and the rmsd values become 0.51-0.83. The smallest rmsd value (0.51) is also associated with the SVPE model. All of the results suggest that the first-principles electronic structure calculations using the SVPE model are a reliable approach to the pKa prediction for the amine compounds.  相似文献   

20.
A novel approach is presented for interpreting and potentially predicting values of the isothermal, isobaric transfer free energy, entropy, and enthalpy (Deltamicrotr2, Deltastr2, and Deltahtr2) for a solute between water and water-cosolvent mixtures. The approach explicitly accounts for volumetric properties of the solvent and solute (the equation of state, EoS) and casts the overall transfer process as a thermodynamic cycle with two stages: (1) isothermal solvent exchange from pure water to the cosolvent composition of interest at fixed mass density; (2) isothermal expansion or compression at the final solvent composition to recover the pressure of the initial state. Using molecular simulations with methane as the solute, the analysis is illustrated over a wide range of cosolvent concentrations for sorbitol-, ethanol-, and methanol-water binary mixtures. The EoS contribution semiquantitatively or quantitatively captures Deltamicrotr2, Deltastr2, and Deltahtr2 in almost all cases tested, highlighting the importance of considering the effects of changes in solvent density on the overall transfer process. The results also indicate that apolar solvation at these length scales is dominated by the work of cavity formation across a range of cosolvent species and concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号