首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A new star-shaped structure conjugated microporous polymers, poly (2,8,14-tri[4-diphenyl-benzene]-hexaazatrinaphthylene) (PTPA-HATN), was designed and in-situ electrochemically polymerized on the surfaces of FTO electrodes with a directional alignment TiO2 nanorod array to obtain TiO2/PTPA-HATN core-shell nanocomposite films. Compared with the PTPA-HATN film, the TiO2/PTPA-HATN composite film exhibits higher optical contrast and faster response time, with contrast of 57% at 783 nm, coloring time of 3.62 s and discoloring time of 2.55 s (43%, 4.63 s and 4.77 s for PTPA-HATN film, respectively). After 400 cycles, the contrast of nanocomposite film decreased by 28%, while the PTPA-HATN film basically lost its electrochromic properties. A simple three-layer EC prototype device based on TiO2/PTPA-HATN nanocomposite film constructed with hydrogel electrolyte clearly shows color changes at different voltages. On the one hand, the formation of core-shell porous nanostructure of TiO2/PTPA-HATN composite film provides a larger ion doping/de-doping interface, shortening the average diffusion length of ions. On the other hand, the large indented polymer-nanorods contact interface makes it difficult for the polymer to detach from the electrode, thus significantly improving the cyclic stability of the composite film.  相似文献   

2.
Thin films of polystyrene and polystyrene-TiO2 nanocomposite were prepared by spin coating from a polystyrene solution in which TiO2 nanoparticles were dispersed by mechanical mixing. Thin films of polystyrene (PS) and polystyrene-TiO2 nanocomposite were exposed to UV irradiation for varied time intervals. The effect of UV radiation on the optical properties, crystallinity, surface energy and degradation of PS-TiO2 nano-composite has been studied. X-Ray diffraction analysis (XRD), UV-Vis and FTIR spectroscopy, Atomic Force Microscopy (AFM) and contact angle measurement were used to study the induced changes of the properties of the irradiated PS-TiO2 nanocomposite. Optical band gaps and hydrophilicity in UV-irradiated samples were altered by destruction processes. The optical band gap values were found to reduce from 4.54 eV in pure PS to 4.45 eV for PS-TiO2 nanocomposite prior to irradiation. This value is further reduced to 3.46 after UV irradiation for 45 h.  相似文献   

3.
In the present work, a new composite material poly(3T + 6T + TiO2) was electrochemically synthesized. This composite material was synthesized in a solution of (CH2Cl2/TBAP) containing the monomers (terthiophene), (sexithiophene) and semiconductor (TiO2) particles. The preparedsamples were characterized electrochemically by cyclic voltamperometry (CV) and spectrometry analysis by scanning electron microscopy (SEM), ultraviolet-visible (UV-Vis) absorption spectroscopy, energy dispersive X-ray spectroscopy (EDX) and fourier transform infrared spectroscopy (FTIR), respectively. The effect of TiO2 concentration in the solution on dispersed microparticle entity and on the photocurrent response was investigated. The results showed that TiO2 particles were dispersed and codeposited into the copolymer poly(3T + 6T + TiO2) matrix, and titanium atom was confirmed by EDX spectra. From SEM images, the TiO2 has a spherical shape and micrometer size. The FTIR spectrum indicated that titanium dioxide do not show a significant modification in terms of band shape and no interaction between polymers and TiO2 particles. Furthermore, the results showed that the composite films with different amounts of TiO2 exhibit good photocurrent properties which imply that these composites films can be used in various fields, such as photoelectrochemical applications as photovoltaic cells.  相似文献   

4.
Nitrogen and sulfur co-doped mesoporous TiO2 thin films were fabricated using thiourea as a doping resource by the combination of the sol–gel and evaporation-induced self-assembly (EISA) processes. Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, and UV–vis spectra were performed to characterize the as-synthesized mesoporous TiO2 materials. The XPS result shows that O–Ti–N and O–Ti–S bonds in the (S, N)-codoped mesoporous TiO2 were formed. The resultant mesoporous (S, N)-codoped TiO2 exhibited anatase framework with a high porosity and a narrow pore distribution. After being illuminated for 3 h, methyl orange (MO) could be degraded completely by the co-doped sample under the ultraviolet irradiation, whereas mesoporous TiO2 film without doping could only degrade 60% MO. After being illuminated by visible light, the water contact angles of the mesoporous co-doped TiO2 samples decreased slightly, but the pure TiO2 mesoporous film exhibited no change in the hydrophilicity.  相似文献   

5.
A TiO2 thin buffer layer was introduced between the (Pb0.4Sr0.6)TiO3 (PST) film and the Pt/Ti/SiO2/Si substrate in an attempt to improve their electrical properties. Both TiO2 and PST layers were prepared by a chemical solution deposition method. It was found that the TiO2 buffer layer increased the (100)/(001) preferred orientation of PST and decreased the surface roughness of the films, leading to an enhancement in electrical properties including an increase in dielectric constant and in its tunability by DC voltage, as well as a decrease in dielectric loss and leakage current density. At an optimized thickness of the TiO2 buffer layer deposited using 0.02 mol/l TiO2 sol, the 330-nm-thick PST films had a dielectric constant, loss and tunability of 1126, 0.044 and 60.7% at 10 kHz, respectively, while the leakage current density was 1.95 × 10−6 A/cm2 at 100 kV/cm.  相似文献   

6.
In this paper, we employ two peroxidases (horseradish peroxidase, HRP and cytochrome c peroxidase, CcP) to demonstrate their ability to retain their redox and biological functions after their immobilisation on mesoporous TiO2 and SnO2 electrodes. We will also demonstrate the use of HRP immobilised on the metal oxide electrodes for the development of reagentless optical and electrochemical biosensors for the detection of hydrogen peroxide (H2O2) with low detection limit of 0.04 and 1 μM, respectively.  相似文献   

7.
TiO2–SiO2 composite nanoparticles were prepared by a sol–gel process. To obtain the assembly of TiO2–SiO2 composite nanoparticles, different molar ratios of Ti/Si were investigated. Polyurethane (PU)/(TiO2–SiO2) hybrid films were synthesized using the “grafting from” technique by incorporation of modified TiO2–SiO2 composite nanoparticles building blocks into PU matrix. Firstly, 3-aminopropyltriethysilane was employed to encapsulate TiO2–SiO2 composite nanoparticles’ surface. Secondly, the PU shell was tethered to the TiO2–SiO2 core surface via surface functionalized reaction. The particle size of TiO2–SiO2 composite sol was performed on dynamic light scattering, and the microstructure was characterized by X-ray diffraction and Fourier transform infrared. Thermogravimetric analysis and transmission electron microscopy (TEM) employed to study the hybrid films. The average particle size of the TiO2–SiO2 composite particles is about 38 nm when the molar ratio of Ti/Si reaches to1:1. The TEM image indicates that TiO2–SiO2 composite nanoparticles are well dispersed in the PU matrix.  相似文献   

8.
TiO2 thin films were obtained on glass slide substrates by the sol–gel technique. The substrates were coated by the immersion-removal method, at a constant withdrawal speed. The TiO2 precursor solution and the substrate were maintained in a closed box with a controlled relative humidity (RH) during the removal of the substrate. The RH was varied in the 30–90% range in steps of 20%. The films were dried and after that sintered in an open atmosphere. The effect of the RH was studied on the structural, optical and photocatalytic properties. The films are polycrystalline with an anatase phase and show a high optical transmission in the UV–Vis range. The photocatalytic activity was evaluated by the photobleaching of methylene blue in an aqueous solution. The best photocatalytic activity was obtained for the films with 90% RH, this fact is mainly attributed to the highest porosity value obtained for these films.  相似文献   

9.
Titania nanocomposite films were fabricated by spin-coating from sol-gel derived pastes of TiO2 powder in titanium isopropoxide sol. The thin films were characterized for structural, optical and hydrophilic properties and evaluated as electrodes in a photoelectrochemical cell. Addition of TiO2 powder increased film thickness, reduced transmittance, water contact angle and electrochemical impedance, and promoted photocurrent generation. Increasing Triton X-100 surfactant loading in the composite slurry influenced film texture and transmittance, and the resultant films exhibited a lower photocurrent yield but were more hydrophilic to favor charge transfer at the electrode/electrolyte interface. The aggregation of TiO2 particles of different sizes in the composite film facilitates light-scattering and electron transport to enhance quantum efficiency. The addition of Triton X-100 surfactant influences the distribution of scattering centers to increase transparency.  相似文献   

10.
PbO2–CeO2 nanocomposite electrodes were prepared by pulse electrodeposition method in the lead nitrate solution containing CeO2 nanoparticles with different peak current density. The content of CeO2 nanoparticles in the electrodes increase with the increase of peak current density. The effects of peak current density on the morphology and structure of PbO2–CeO2 nanocomposite electrodes were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The SEM and XRD results show that the increase of peak current density can make the morphology finer and more compact, and the crystal size decreases with the increase of peak current density. The oxygen evolution overpotential and stability of PbO2–CeO2 nanocomposite electrodes enhance with the increase of peak current density. The electrocatalytic property of PbO2–CeO2 nanocomposite electrodes was examined for the electrochemical oxidation of rhodamine B (RhB). The results show that the RhB removal efficiency on PbO2–CeO2 nanocomposite electrodes increase with the increase of peak current density, which can be attributed to the higher oxygen evolution overpotential and CeO2 content in the composite electrodes.  相似文献   

11.
A series of PANI-CNTs/TiO2 nanotubes/Ti electrodes were fabricated via pulse current co-electrodeposition of polyaniline and functionalized carbon nanotubes onto TiO2 nanotubes/Ti electrodes. FT-IR spectrometry, X-ray photoelectron spectroscopy, and scanning electron microscopy were applied in order to characterize the modified TiO2 nanotubes/Ti electrodes. The morphology studies showed that the PANI-CNTs/TiO2 nanotubes/Ti nanocomposite electrode has many interlaced PANI-CNTs nanorods on the surface of TiO2 nanotubes. The electrochemical measurements of the modified electrodes confirmed that the CNTs in the composite can significantly improve the capacitive behavior as well which have been compared with that of PANI/TiO2 nanotubes/Ti electrodes. The modified electrode exhibited much higher specific capacitance (190 mF cm?2 with 90% retention after 1000 cycles) compared to the PANI/TiO2 nanotubes/Ti (70 mF cm?2 with 77% retention after 1000 cycles) at a current density of 0.85 mA cm?2, indicating its great potential for supercapacitor applications.
Graphical abstract Interlaced polyaniline/carbon nanotube nanocomposite electrodeposited on TiO2 nanotubes/Ti
  相似文献   

12.
PbO2-CeO2 nanocomposite electrodes were prepared by pulse electrodeposition in the lead nitrate solution containing CeO2 nanoparticles with different duty cycles. The effects of duty cycle on the morphology and phase structure were investigated by scanning electronic microscopy (SEM) and X-ray diffraction (XRD), respectively. The SEM and XRD results show that the decrease of duty cycle can reduce the grain size of PbO2-CeO2 nanocomposite electrodes and make the electrodes more compact. The CeO2 content in composite electrodes increases with the decrease of duty cycle. The steady-state polarization curves and accelerated life tests demonstrate that the oxygen evolution overpotential and service life of PbO2-CeO2 nanocomposite electrodes increase with the decrease of duty cycle. The service life of PbO2-CeO2 nanocomposite electrodes prepared with 25 % duty cycle reaches 218 h which is 1.8 times longer than that of PbO2-CeO2 nanocomposite electrodes prepared by direct electrodeposition. The bulk electrolysis shows that the degradation of malachite green (MG) on the PbO2-CeO2 nanocomposite electrodes is the pseudo-first-order reaction and the MG and chemical oxygen demand (COD) removal efficiency on PbO2-CeO2 nanocomposite electrodes increases with the decrease of duty cycle, which can be attributed to the higher oxygen evolution overpotentials, electrochemical active surface area, and CeO2 content in the composite electrodes.  相似文献   

13.
In the present work, we have fabricated a novel mesoporous TiO2–rGO nanocomposite by a facile one-step solvothermal method using titanic sulfate as the TiO2 source. The as-prepared composites were characterized by transmission electron microscopy, X-ray diffraction; UV–Vis diffuse reflectance spectra, X-ray photoelectron spectroscopy and photoluminence spectra. In situ nucleation and anchoring of TiO2 nanoparticles onto a graphene sheet is favorable fpr forming an intimate interfacial contact, and the chemically bonded TiO2–rGO nanocomposites commendably enhanced their photocatalytic activity in the photodegradation of rhodamine B and phenol. The high photocatalytic activity of the as-synthesized nanocomposites are primarily ascribed to the mesoporous structure, efficient charge transportation and separation with enhanced visible light absorption, which come from the appealing nanoarchitecture, for instance, ultra-dispersed and ultra-small TiO2 nanocrystals along with intimate and absolute interfacial contact between the TiO2 nanocrystals and the graphene sheet.  相似文献   

14.
TiO2 sol-gel composite films with dropping molybdenumphosphoric acid (PMoA) have been prepared by sol-gel method. The structure and constitute of composite thin films were studied with Fourier transforms infrared spectroscopy (FT-IR) atomic force microscopy (AFM), and X-ray diffraction (XRD) patterns, respectively. The photochromic behavior and mechanism of composite thin films were investigated with ultraviolet-visible spectra (UV-vis) and electron spin resonance (ESR). FT-IR results showed that the Keggin geometry of PMoA was still preserved inside PMoA/TiO2 composite thin films, and a charge transfer bridge was built at the interface of PMoA and TiO2 through the Mo-O-Ti bond. Surface topography of the composite film showed obvious changes before/after adding PMoA, and the surface topography of composite films showed obvious changes before/after irradiating as well. Composite thin film had reversible photochromic properties. Irradiated with UV light, transparent films changed from colorless to blue and they can bleach completely with ambient air in the dark. ESR results showed that TiO2 were excitated by UV light to produce electrons, which deoxidized PMoA to produce heteropolyblues. The photochromic process of PMoA/TiO2 system was carried through electron transfer mechanism.  相似文献   

15.
NiS/TiO2 nano-sheet films (NiS/TiO2 NSFs) photocatalysts were prepared by loading NiS nanoparticles as noble metal-free cocatalysts on the surface of TiO2 films through a solvothermal method. The prepared samples were characterized by XRD, SEM, EDS, UV–Vis absorption spectra and XPS analysis. The photocatalytic H2 evolution and photoluminescence spectroscopy (PL) experiments indicated that the NiS cocatalysts could efficiently promote the separation of photogenerated charge carriers in TiO2 and consequently enhance the H2 evolution activity. The hydrogen yield obtained from the optimal sample reached 4.31 μmol cm–2 at 3.0 h and the corresponding energy efficiency was about 0.26%, which was 21 times higher than that of pure TiO2 NSF. A possible photocatalytic mechanism of NiS cocatalyst on the improvement of the photocatalytic performance of TiO2 NSF was also proposed.  相似文献   

16.
Highly (110)-oriented Ba0.65Sr0.35TiO3 films were deposited on Pt/LaNiO3/SiO2/Si substrates by a sol–gel method. It was found that the (110)-preferred Pt film was very effective for growing (110)-oriented ferroelectric films with perovskite structure. The as-grown Ba0.65Sr0.35TiO3 films showed good dielectric properties with dielectric constant and loss tangent tan δ = 0.026. Excellent dielectric tunability was also achieved in the (110)-oriented films. With applying an electric field of 230 kV/cm at 100 kHz, the dielectric tunability and the figure of merit can reach up to 63.4% and 16, respectively. These results indicate that the highly (110)-oriented Ba0.65Sr0.35TiO3 film is a promising candidate for the applications in microwave tunable devices.  相似文献   

17.
Nanocrystalline porous TiO2 electrodes for dye-sensitized solar cells (DSC) are modified by adding polymethyl methacrylate (PMMA). The result shows that large holes are formed in the TiO2 films, and the short circuit photocurrent density and photoelectric conversion efficiency of DSCs are obviously enhanced compared with those without adding the PMMA. The relationship between the photoelectric conversion efficiency and the amount of PMMA is presented. In particular, the highest conversion efficiency was obtained with TiO2 electrode films of adding 7.5 wt% PMMA, increasing the conversion efficiency by 27.5%.  相似文献   

18.
Poly(l-lactic acid)-TiO2 nanoparticle nanocomposite films were prepared by incorporating surface modified TiO2 nanoparticles into polymer matrices. In the process of preparing the nanocomposite films, severe aggregation of TiO2 nanoparticles could be reduced by surface modification by using carboxylic acid and long-chain alkyl amine. As a result, the nanocomposite films with high transparency, similar to pure PLA films, were obtained without depending on the amount of added TiO2 nanoparticles. A TEM micrograph of the nanocomposite films suggests that the TiO2 nanoparticles of 3-6 nm in diameter were uniformly dispersed in polymer matrices. Photodegradation of PLA-TiO2 nanoparticle nanocomposite films was also investigated. The results showed that nanocomposite films could be efficiently photodegraded by UV irradiation in comparison with pure PLA.  相似文献   

19.
张维  崔晓莉  江志裕 《化学学报》2008,66(8):867-873
采用溶胶凝胶法制备了系列不同含量的多壁碳纳米管(MWCNT)/TiO2纳米复合薄膜电极, 通过SEM和XRD表征了薄膜的形貌和晶型结构. 以1 mol/L KOH为电解质, 考察了MWCNT的含量对纳米复合薄膜电极在白光、可见光照射下光电性能的影响. 结果表明: 相对纯TiO2薄膜电极, MWCNT/TiO2纳米复合薄膜电极的光电压、光电流明显增大, 对可见光区的光电响应能力也明显提高. MWCNT薄膜具有良好的电子导电性、吸光性和镂空的网状结构等性质, 形成了一个理想的基板负载TiO2纳米颗粒, 而且显著提高了纳米复合薄膜电极光生载流子的分离效率和模拟太阳光的利用效率. 研究发现, 纳米复合薄膜电极中MWCNT的最佳含量是0.04 mg/cm2.  相似文献   

20.
Within the framework of the density functional theory (DFT), the electronic structure of monooxodioxovanadium functional groups in tetrahedral coordination, which model the active centers (ACs) of fine supported catalysts V2O5/SiO2 and V2O5/TiO2, has been analyzed. The optimal structures of three ACs as possible models of monomeric and polymeric oxovanadium forms on the carriers with low vanadium content were determined. The modified DFT method involving the time dependence of Kohn-Sham equation (TDDFT) was used for the adopted AC models to calculate the energies of the excited states, and optical spectra of the absorption in 25000–60000 cm?1 region were reconstructed on their base. The spectrum in this region is due to O → V charge transfer. The features of electronic spectra with the charge transfer for V2O5/SiO2 and V2O5/TiO2 catalysts and the vibrational spectra of three AC models corresponding to the monomeric and dimeric oxovanadium forms of the supported catalysts V2O5/SiO2 and V2O5/TiO2 were defined. The detailed interpretation of normal vibration frequencies is given. The frequencies typical of the monomeric and dimeric oxovanadium forms on the carrier surface were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号