首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper is devoted to the study of the weak norms of the classical operators in the vector-valued setting.
  1. Let S, H denote the singular integral involution operator and the Hilbert transform on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {\mathcal{S}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p,$$ $$\left\| {\mathcal{H}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p.$$ Both inequalities are sharp.
  2. Let P + and P ? stand for the Riesz projection and the co-analytic projection on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {P + f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p ,$$ $$\left\| {P - f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p .$$ Both inequalities are sharp.
  3. We establish the sharp versions of the estimates above in the nonperiodic case.
The results are new even if the operators act on complex-valued functions. The proof rests on the construction of an appropriate plurisubharmonic function and probabilistic techniques.  相似文献   

2.
The paper introduces singular integral operators of a new type defined in the space L p with the weight function on the complex plane. For these operators, norm estimates are derived. Namely, if V is a complex-valued function on the complex plane satisfying the condition |V(z) ? V(??)| ?? w|z ? ??| and F is an entire function, then we put $$P_F^* f(z) = \mathop {\sup }\limits_{\varepsilon > 0} \left| {\int\limits_{\left| {\zeta - z} \right| > \varepsilon } {F\left( {\frac{{V(\zeta ) - V(z)}} {{\zeta - z}}} \right)\frac{{f(\zeta )}} {{\left( {\zeta - z} \right)^2 }}d\sigma (\zeta )} } \right|.$$ It is shown that if the weight function ?? is a Muckenhoupt A p weight for 1 < p < ??, then $$\left\| {P_F^* f} \right\|_{p,\omega } \leqslant C(F,w,p)\left\| f \right\|_{p,\omega } .$$ .  相似文献   

3.
We obtain Hardy type inequalities $$\int_0^\infty {M\left( {\omega \left( r \right)\left| {u\left( r \right)} \right|} \right)\rho \left( r \right)dr} \leqslant C_1 \int_0^\infty {M\left( {\left| {u\left( r \right)} \right|} \right)\rho \left( r \right)dr + C_2 \int_0^\infty {M\left( {\left| {u'\left( r \right)} \right|} \right)\rho \left( r \right)dr,} }$$ and their Orlicz-norm counterparts $$\left\| {\omega u} \right\|_{L^M (\mathbb{R}_ + ,\rho )} \leqslant \tilde C_1 \left\| u \right\|_{L^M (\mathbb{R}_ + ,\rho )} + \tilde C_2 \left\| {u'} \right\|_{L^M (\mathbb{R}_ + ,\rho )} ,$$ with an N-function M, power, power-logarithmic and power-exponential weights ??, ??, holding on suitable dilation invariant supersets of C 0 ?? (?+). Maximal sets of admissible functions u are described. This paper is based on authors?? earlier abstract results and applies them to particular classes of weights.  相似文献   

4.
Let S j : (Ω, P) → S 1 ? ? be an i.i.d. sequence of Steinhaus random variables, i.e. variables which are uniformly distributed on the circle S 1. We determine the best constants a p in the Khintchine-type inequality $${a_p}{\left\| x \right\|_2} \leqslant {\left( {{\text{E}}{{\left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|}^p}} \right)^{1/p}} \leqslant {\left\| x \right\|_2};{\text{ }}x = ({x_j})_{j = 1}^n \in {{\Bbb C}^n}$$ for 0 < p < 1, verifying a conjecture of U. Haagerup that $${a_p} = \min \left( {\Gamma {{\left( {\frac{p}{2} + 1} \right)}^{1/p}},\sqrt 2 {{\left( {{{\Gamma \left( {\frac{{p + 1}}{2}} \right)} \mathord{\left/ {\vphantom {{\Gamma \left( {\frac{{p + 1}}{2}} \right)} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right)}^{1/p}}} \right)$$ . Both expressions are equal for p = p 0 }~ 0.4756. For p ≥ 1 the best constants a p have been known for some time. The result implies for a norm 1 sequence x ∈ ? n , ‖x2 = 1, that $${\text{E}}\ln \left| {\frac{{{S_1} + {S_2}}}{{\sqrt 2 }}} \right| \leqslant {\text{E}}\ln \left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|$$ , answering a question of A. Baernstein and R. Culverhouse.  相似文献   

5.
The main aim of this paper is to prove that the maximal operator $\sigma _p^{\kappa , * } f: = \sup _{n \in P} {{\left| {\sigma _n^\kappa f} \right|} \mathord{\left/ {\vphantom {{\left| {\sigma _n^\kappa f} \right|} {\left( {n + 1} \right)^{{1 \mathord{\left/ {\vphantom {1 {p - 2}}} \right. \kern-0em} {p - 2}}} }}} \right. \kern-0em} {\left( {n + 1} \right)^{{1 \mathord{\left/ {\vphantom {1 {p - 2}}} \right. \kern-0em} {p - 2}}} }}$ is bounded from the Hardy space H p to the space L p for 0 < p < 1/2.  相似文献   

6.
In this paper, we prove that the maximal operatorsatisfiesis homogeneous of degree 0, has vanishing moment up to order M and satisfies Lq-Dini condition for some  相似文献   

7.
For functions f which are bounded throughout the plane R2 together with the partial derivatives f(3,0) f(0,3), inequalities $$\left\| {f^{(1,1)} } \right\| \leqslant \sqrt[3]{3}\left\| f \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left\| {f^{(3,0)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left\| {f^{(0,3)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} ,\left\| {f_e^{(2)} } \right\| \leqslant \sqrt[3]{3}\left\| f \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left( {\left\| {f^{(3,0)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left| {e_1 } \right| + \left\| {f^{(0,3)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left| {e_2 } \right|} \right)^2 ,$$ are established, where ∥?∥denotes the upper bound on R2 of the absolute values of the corresponding function, andf fe (2) is the second derivative in the direction of the unit vector e=(e1, e2). Functions are exhibited for which these inequalities become equalities.  相似文献   

8.
It is well known that the doubly weighted Hardy-Littlewood-Sobolev inequality is as follows,Z Rn Z Rn f(x)g(y)|x||x.y||y|dxdy6 B(p,q,,,,n)kfkLp(Rn)kgkLq(Rn).The main purpose of this paper is to give the sharp constants B(p,q,,,,n)for the above inequality for three cases:(i)p=1 and q=1;(ii)p=1 and 1q 6∞,or 1p 6∞and q=1;(iii)1p,q∞and 1p+1q=1.In addition,the explicit bounds can be obtained for the case 1p,q∞and 1p+1q1.  相似文献   

9.
10.
11.
We obtain conditions for the convergence in the spaces L p [0, 1], 1 ≤ p < ∞, of biorthogonal series of the form $$ f = \sum\limits_{n = 0}^\infty {(f,\psi _n )\phi _n } $$ in the system {? n } n≥0 of contractions and translations of a function ?. The proposed conditions are stated with regard to the fact that the functions belong to the space $ \mathfrak{L}^p $ of absolutely bundleconvergent Fourier-Haar series with norm $$ \left\| f \right\|_p^ * = \left| {f,\chi _0 } \right| + \sum\limits_{k = 0}^\infty {2^{k({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p})} } \left( {\sum\limits_{n = 2^k }^{2^{k + 1} - 1} {\left| {f,\chi _n } \right|^p } } \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ where (f n ), n = 0, 1, ..., are the Fourier coefficients of a function f ? L p [0, 1] in the Haar system {χ n } n≥0. In particular, we present conditions for the system {? n } n≥0 of contractions and translations of a function ? to be a basis for the spaces L p [0, 1] and $ \mathfrak{L}^p $ .  相似文献   

12.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

13.
The purpose of this paper is to show the following: Let 0<p<1/2. IfT=U|T| is a p-hyponormal operator with a unitaryU on a Hilbert space, then $$\sigma (T) = \mathop \cup \limits_{0 \leqslant k \leqslant 1} \sigma (T_{\left[ k \right]} ),$$ where $$T_{\left[ k \right]} = U[(1 - k)S_U^ - (\left| T \right|^{2p} ) + kS_U^ + (\left| T \right|^{2p} ]^{\tfrac{1}{{2p}}} $$ andS U ± (T) denote the polar symbols ofT.  相似文献   

14.
In this paper, the authors give the boundedness of the commutator [b, ????,?? ] from the homogeneous Sobolev space $\dot L_\gamma ^p \left( {\mathbb{R}^n } \right)$ to the Lebesgue space L p (? n ) for 1 < p < ??, where ????,?? denotes the Marcinkiewicz integral with rough hypersingular kernel defined by $\mu _{\Omega ,\gamma } f\left( x \right) = \left( {\int_0^\infty {\left| {\int_{\left| {x - y} \right| \leqslant t} {\frac{{\Omega \left( {x - y} \right)}} {{\left| {x - y} \right|^{n - 1} }}f\left( y \right)dy} } \right|^2 \frac{{dt}} {{t^{3 + 2\gamma } }}} } \right)^{\frac{1} {2}} ,$ , with ?? ?? L 1(S n?1) for $0 < \gamma < min\left\{ {\frac{n} {2},\frac{n} {p}} \right\}$ or ?? ?? L(log+ L) ?? (S n?1) for $\left| {1 - \frac{2} {p}} \right| < \beta < 1\left( {0 < \gamma < \frac{n} {2}} \right)$ , respectively.  相似文献   

15.
16.
17.
Let Δ q be the set of functionsf for which theqth difference, is nonnegative on the interval [? 1,1],P n is the set of algebraic polynomials of degree not exceedingn, τ k (f, δ) p is the averaged Sendov-Popov modulus of smoothness in theL p [?1,1] metric for 1≦p≦∞, ω k (f, δ) and $\omega _\phi ^k (f,\delta ),\phi (x): = \sqrt {1 - x^2 } ,$ , are the usual modulus and the Ditzian-Totik modulus of smoothness in the uniform metric, respectively. For a functionfC[?1,1]?Δ2 we construct a polynomialp n P n 2 such that $$\begin{gathered} \left| {f(x) - p_n (x)} \right| \leqslant C\omega _3 (f,n^{ - 1} \sqrt {1 - x^2 } + n^{ - 2} ),x \in [ - 1,1]; \hfill \\ \left\| {f - p_n } \right\|_\infty \leqslant C\omega _\phi ^3 (f,n^{ - 1} ); \hfill \\ \left\| {f - p_n } \right\|_p \leqslant C\tau _3 (f,n^{ - 1} )_p . \hfill \\ \end{gathered}$$ As a consequence, for a functionfC 2[?1,1]?Δ3 a polynomialp n * P n 3 exists such that $$\left\| {f - p_n^* } \right\|_\infty \leqslant Cn^{ - 1} \omega _2 (f\prime ,n^{ - 1} ),$$ wheren≥2 andC is an absolute constant.  相似文献   

18.
Timofeev  N. M.  Khripunova  M. B. 《Mathematical Notes》2004,76(1-2):244-263
Suppose that $${g\left( n \right)}$$ is an additive real-valued function, W(N) = 4+ $$\mathop {\min }\limits_\lambda $$ ( λ2 + $$\sum\limits_{p < N} {\frac{1}{2}} $$ min (1, ( g(p) - λlog p)2), E(N) = 4+1 $$\sum\limits_{\mathop {p < N,}\limits_{g(p) \ne 0} } {\frac{1}{p}.} $$ In this paper, we prove the existence of constants C1, C2 such that the following inequalities hold: $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) \in [a,a + 1)} \right\}} \right| \leqslant \frac{{C_1 N}}{{\sqrt {W\left( N \right)} }},$ $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) = a} \right\}} \right| \leqslant \frac{{C_2 N}}{{\sqrt {E\left( N \right)} }},$ . The obtained estimates are order-sharp.  相似文献   

19.
Let p, n ∈ ? with 2pn + 2, and let I a be a polyharmonic spline of order p on the grid ? × a? n which satisfies the interpolating conditions $I_{a}\left( j,am\right) =d_{j}\left( am\right) $ for j ∈ ?, m ∈ ? n where the functions d j : ? n → ? and the parameter a > 0 are given. Let $B_{s}\left( \mathbb{R}^{n}\right) $ be the set of all integrable functions f : ? n → ? such that the integral $$ \left\| f\right\| _{s}:=\int_{\mathbb{R}^{n}}\left| \widehat{f}\left( \xi\right) \right| \left( 1+\left| \xi\right| ^{s}\right) d\xi $$ is finite. The main result states that for given $\mathbb{\sigma}\geq0$ there exists a constant c>0 such that whenever $d_{j}\in B_{2p}\left( \mathbb{R}^{n}\right) \cap C\left( \mathbb{R}^{n}\right) ,$ j ∈ ?, satisfy $\left\| d_{j}\right\| _{2p}\leq D\cdot\left( 1+\left| j\right| ^{\mathbb{\sigma}}\right) $ for all j ∈ ? there exists a polyspline S : ? n+1 → ? of order p on strips such that $$ \left| S\left( t,y\right) -I_{a}\left( t,y\right) \right| \leq a^{2p-1}c\cdot D\cdot\left( 1+\left| t\right| ^{\mathbb{\sigma}}\right) $$ for all y ∈ ? n , t ∈ ? and all 0 < a ≤ 1.  相似文献   

20.
This paper is a continuation of [3]. Suppose f∈Hp(T), 0σ r σ f,σ=1/p?1. When p=1, it is just the partial Fourier sums Skf. In this paper we establish the sharp estimations on the degree of approximation: $$\left\{ { - \frac{1}{{logR}}\int\limits_1^R {\left\| {\sigma _r^\delta f - f} \right\|_{H^p (T)}^p \frac{{dr}}{r}} } \right\}^{1/p} \leqq C{\mathbf{ }}{}_p\omega \left( {f,{\mathbf{ }}( - \frac{1}{{logR}})^{1/p} } \right)_{H^p (T)} ,0< p< 1,$$ and \(\frac{1}{{\log L}}\sum\limits_{k - 1}^L {\frac{{\left\| {S_k f - f} \right\|_H 1_{(T)} }}{k} \leqq Cp\omega (f; - \frac{1}{{\log L}})_H 1_{(T)} } \) Where $$\omega (f,{\mathbf{ }}h)_{H^p (T)} \begin{array}{*{20}c} { = Sup} \\ {0 \leqq \left| u \right| \leqq h} \\ \end{array} \left\| {f( \cdot + u) - f( \cdot )} \right\|_{H^p (T).} $$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号