首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured melanocytes originating from persons with different skin phototypes were utilized for measurement of endonuclease sensitive sites induced by UVB and the determination of cell survival after UVA or UVB irradiation. During culture, the melanocytes largely maintained their phenotypic characteristics according to their original skin phototype. Total melanin concentrations were 4.9 times higher in the darker skin phototype (IV-VI) melanocytes when compared to the cells from lighter skin phototypes (I-III). Also phaeomelanin contents were higher (2.5 times) in the skin phototype (IV-VI) melanocytes which implies that the cells from light skin types contain less melanin, but a relatively high proportion of phaeomelanin. After UVB irradiation a stronger induction of endonuclease sensitive sites was found for melanocytes with a lower level of total melanin and a high content of pheomelanin. By measuring the clone forming ability in different melanocyte cultures after UVB irradiation, significant better survival was found in case of the cells with the higher melanin content. Despite the large variations in melanin content, no significant difference in survival after UVA irradiation could be demonstrated in this way. Our results suggest a protective effect of melanin for UVB and indicate the importance of the measurements of melanin content and composition when different parameters of UV-induced damage are studied in melanin producing cells.  相似文献   

2.
Pigmentation of human skin is determined by the presence of melanin, the polymeric pigment that is produced in melanocytes and transferred to adjacent keratinocytes. Epidermal melanocytes produce two distinct types of melanin pigments: eumelanin, composed mainly of indole-type monomers, and pheomelanin that contains benzothiazine-type backbone. Eumelanin protects skin against UV-induced damages, whereas pheomelanin is believed to act as a potent UV photosensitizer and promote carcinogenesis. In this study, pyrolysis in combination with gas chromatography and mass spectrometry (Py-GC/MS) was applied for structural studies of the epidermal pigment isolated from the cultured human melanocytes. The analysis was preceded by investigations of DOPA-originated synthetic eumelanin and pheomelanin standards. This allowed determination of pyrolytic markers for both types of melanin pigments. To obtain additional information on the natural pigment structure, the samples were thermally degraded in the presence of tetramethylammonium hydroxide as the derivatizing agent. It was shown that the analyzed pigment from normal human epidermal melanocytes derived from moderately pigmented skin is of eumelanin type with little incorporation of a pheomelanin component. The results indicate that Py-GC/MS is a rapid and efficient technique for the differentiation of epidermal melanin types and may be an alternative to commonly used methods based on chemical degradation.  相似文献   

3.
Cutaneous pigmentation is the major photoprotective mechanism against the carcinogenic and aging effects of UV. Epidermal melanocytes synthesize the pigment melanin, in the form of eumelanin or pheomelanin. Synthesis of the photoprotective eumelanin by human melanocytes is regulated mainly by the melanocortins alpha-melanocortin (alpha-MSH) and adrenocorticotropic hormone (ACTH), which bind the melanocortin 1 receptor (MC1R) and activate the cAMP pathway that is required for UV-induced tanning. Melanocortins stimulate proliferation and melanogenesis and inhibit UV-induced apoptosis of human melanocytes. Importantly, melanocortins reduce the generation of hydrogen peroxide and enhance repair of DNA photoproducts, independently of pigmentation. MC1R is a major contributor to the diversity of human pigmentation and a melanoma susceptibility gene. Certain allelic variants of this gene, namely R151C, R160W and D294H, are strongly associated with red hair phenotype and increased melanoma susceptibility. Natural expression of two of these variants sensitizes melanocytes to the cytotoxic effect of UV, and increases the burden of DNA damage and oxidative stress. We are designing potent melanocortin analogs that mimic the effects of alpha-MSH as a strategy to prevent skin cancer, particularly in individuals who express MC1R genotypes that reduce but do not abolish MC1R function, or mutations in other melanoma susceptibility genes, such as p16.  相似文献   

4.
Skin pigmentation is due to the accumulation of two types of melanin granules in the keratinocytes. Besides being the most potent blocker of ultraviolet radiation, the role of melanin in photoprotection is complex. This is because one type of melanin called eumelanin is UV absorbent, whereas the other, pheomelanin, is photounstable and may even promote carcinogenesis. Skin hyperpigmentation may be caused by stress or exposure to sunlight, which stimulates the release of α‐melanocyte stimulating hormone (α‐MSH) from damaged keratinocytes. Melanocortin 1 receptor (MC1R) is a key signaling molecule on melanocytes that responds to α‐MSH by inducing expression of enzymes responsible for eumelanin synthesis. Persons with red hair have mutations in the MC1R causing its inactivation; this leads to a paucity of eumelanin production and makes red‐heads more susceptible to skin cancer. Apart from its effects on melanin production, the α‐MSH/MC1R signaling is also a potent anti‐inflammatory pathway and has been shown to promote antimelanoma immunity. This review will focus on the role of MC1R in terms of its regulation of melanogenesis and influence on the immune system with respect to skin cancer susceptibility.  相似文献   

5.
Ultraviolet radiation (UVR) is one of the risk factors for skin cancer and the main inducer of melanin pigmentation, the major protective mechanism of mammalian skin against radiation damage. The melanin pigments, eumelanin and pheomelanin, are likely to be important in protection against UVR, but their precursors are generally considered as phototoxic. The available data suggest DNA damage as the mechanism of phototoxicity. However, the effect of melanin precursors on membrane damage through lipid peroxidation, another important and probably more relevant (from the point-of-view of the melanosomal confinement of these molecules) mechanism of phototoxicity, is not known. As a model system for UVR–melanin–membrane interactions, we irradiated liposomes in the presence of eumelanin, pheomelanin and two of their major precursors, 5,6-dihydroxyindole (DHI) and 5-S-cysteinyldopa (SCD). The presence of the two melanin precursors substantially reduced the formation of lipid peroxidation products resulting from UVR exposure. The antioxidant activity of the melanin precursors was diminished under strong prooxidant conditions (presence of Fe3+). These results suggest that melanin precursors may have an important role in the protection of skin against the harmful effects of UVR including photocarcinogenesis.  相似文献   

6.
The photobiology of mouse melanocyte lines with different pigment genotypes was studied by measuring colony-forming ability after irradiation. The cell lines were wild-type black (melan-a) and the mutants brown (melan-b) and albino (melan-c). Four lamps emitting various UV wavelengths were used. These were germicidal (UVC, 200–280 Dm), 82.3% output at 254 nm, TL01 (UVB, 280–320 nm), 64.2% at 310–311 nm, FS20, broadband with peak output at 312 nm and Alisun-S (UVA, 320–400 nm), broadband with peak output at 350–354 nm. Appropriate filtration reduced the contaminating UVC to nonlethal levels for the longer waverange lamps. Wild-type melan-a was resistant to UVC and UVA compared to the other two cell lines, but the differences were small. The melan-c cell line was more resistant to UVB and markedly more resistant to FS20 than the pigmented lines. With the exception of FS20 responses, melan-b was more sensitive than melan-a to killing by the various UV lamps. There were more pyrimidine dimers (cyclobutane dimers and 6–4 photoproducts) produced in melan-a than in melan-c cells by UVC, UVB and FS20 lamps. Unlike melan-c, melan-a and melan-b showed a strong free radical signal of melanin character with a detectable contribution of pheomelanin-like centers. The contribution of pheome-lanin was higher in melan-b than in melan-a, while the total melanin content in these two cell lines was comparable. The abundant melanin granules of wild-type melan-a melanocytes were well melanized and ellipsoidal, whereas those of melan-b melanocytes tended to be spherical. In the albino line (melan-c) the melanocytes contained only early-stage melanosomes, all of which were devoid of melanin. The results indicate that pigment does not protect against direct effect DNA damage in the form of pyrimidine dimers nor does it necessarily protect against cell death. High pigment content is not very protective against killing by UVC and UVA, and it may photosensitize in UVB the very wavelength range that is of greatest concern with respect to the rising incidence in skin cancer, especially melanoma. It is clear from these studies that, in pigment cells, monochromatic results cannot predict polychromatic responses and that cell death from solar irradiations is a complex phenomenon that depends on more than DNA damage.  相似文献   

7.
Melanin synthesis is an oxygen-dependent process that acts as a potential source of reactive oxygen species (ROS) inside pigment-forming cells. The synthesis of the lighter variant of melanin, pheomelanin, consumes cysteine and this may limit the capacity of the cellular antioxidative defense. We show that tyrosine-induced melanogenesis in cultured normal human melanocytes (NHM) is accompanied by increased production of ROS and decreased concentration of intracellular glutathione. Clinical atypical (dysplastic) nevi (DN) regularly contain more melanin than do normal melanocytes (MC). We also show that in these cultured DN cells three out of four exhibit elevated synthesis of pheomelanin and this is accompanied by their early senescence. By using various redox-sensitive molecular probes, we demonstrate that cultured DN cells produce significantly more ROS than do normal MC from the same donor. Our experiments employing single-cell gel electrophoresis (comet assay) usually reveal higher fragmentation of DNA in DN cells than in normal MC. Even if in some cases the normal alkaline comet assay shows no differences in DNA fragmentation between DN cells and normal MC, the use of the comet assay with formamidopyrimidine DNA glycosylase can disclose that the DNA of the cultured DN cells harbor more oxidative damage than the DNA of normal MC from the same person.  相似文献   

8.
Throughout the body, melanin is a homogenous biological polymer containing a population of intrinsic, semiquinone-like radicals. Additional extrinsic free radicals are reversibly photo-generated by UV and visible light. Melanin photochemistry, particularly the formation and decay of extrinsic radicals, has been the subject of numerous electron spin resonance (ESR) spectroscopy studies. Several melanin monomers exist, and the predominant monomer in a melanin polymer depends on its location within an organism. In skin and hair, melanin differs in content of eumelanin or pheomelanin. Its bioradical character and its susceptibility to UV irradiation makes melanin an excellent indicator for UV-related processes in both skin and hair. The existence of melanin in skin is strongly correlated with the prevention against free radicals/ROS generated by UV radiation. Especially in the skin melanin (mainly eumelanin) ensures the only natural UV protection by eliminating the generated free radicals/ROS. Melanin in hair can be used as a free radical detector for evaluating the efficacy of hair care products. The aim of this study was to investigate the suitability of melanin as protector of skin against UV generated free radicals and as free radical indicator in hair.  相似文献   

9.
Melanoma incidences are increasing rapidly, and ultraviolet (UV) radiation from the sun is believed to be its major contributing factor. UV exposure causes DNA damage in skin which may initiate cutaneous skin cancers including melanoma. Melanoma arises from melanocytes, the melanin‐producing skin cells, following genetic dysregulations resulting into hyperproliferative phenotype and neoplastic transformation. Both UVA and UVB exposures to the skin are believed to trigger melanocytic hyperplasia and melanomagenesis. Melanocytes by themselves are deficient in repair of oxidative DNA damage and UV‐induced photoproducts. Nicotinamide, an active form of vitamin B3 and a critical component of the human body's defense system has been shown to prevent certain cancers including nonmelanoma skin cancers. However, the mechanism of nicotinamide's protective effects is not well understood. Here, we investigated potential protective effects and mechanism of nicotinamide against UVA‐ and/or UVB‐ induced damage in normal human epidermal melanocytes. Our data demonstrated an appreciable protective effect of nicotinamide against UVA‐ and/or UVB‐ induced DNA damage in melanocytes by decreasing both cyclobutane pyrimidine dimers and 8‐hydroxy‐2′‐deoxyguanosine levels. We found that the photoprotective response of nicotinamide was associated with the activation of nucleotide excision repair genes and NRF2 signaling. Further studies are needed to validate our findings in in vivo models.  相似文献   

10.
黑色素的合成及小分子对其功能的调控   总被引:1,自引:0,他引:1  
黑色素作为一种天然色素, 可以大致分为真黑素和褐黑素. 它们广泛存在于微生物、 高等动物和植物体内, 具有自由基清除、 辐射防护和热调节等功能. 对人类而言, 黑色素在一定程度上影响着皮肤、 头发以及眼睛的颜色, 在保护皮肤免受紫外线照射产生有害损伤方面具有重要作用. 黑素细胞功能异常会带来一系列的皮肤问题, 如黑色素瘤和白癜风等疾病. 因此, 调控黑色素的产生是治疗色素相关疾病的重要途径. 黑色素合成过程中涉及到酪氨酸酶、 酪氨酸酶相关蛋白酶等多种酶的催化和化学反应. 通过小分子调控这些酶的催化过程, 改变其活性及表达是调控黑色素合成的有效途径. 在生物体内, 黑色素都是通过生物合成的. 由于黑色素的独特功能, 化学家也开发了一些人工化学合成黑色素的方法. 在小分子调控黑色素功能方面, 已发现多种可抑制黑色素形成的小分子, 这些小分子为黑色素相关疾病的治疗提供了新途径. 本文综合评述了黑色素的合成(包括生物合成与人工合成)、 抑制机理以及小分子化合物对黑色素的调控, 为开发安全、 高效的黑色素相关药物提供了理论基础.  相似文献   

11.
Exposure to sunlight is responsible for most cutaneous malignant melanomas in the human population. It is very likely that DNA damage is an initial event in melanomagenesis, however, the role played by this damage is an open question. To this end, we used a hemipigmented F1 hybrid of the fish genus Xiphophorus and HPLC tandem mass spectrometry to examine the effects of melanin on the induction and repair of the predominant UV-induced photoproducts formed in skin cell DNA. We found that heavily pigmented skin cells had about half the damage of nonpigmented cells and the relative induction of the major photoproducts was independent of the degree of pigmentation. The efficiency of photoenzymatic repair was the same in nonpigmented and pigmented areas of the fish. We found no evidence of residual damage at 10 days after the last exposure. Most striking was that repeated exposure to multiple doses of UVB caused a very significant photoadaptive response. Rather than an accumulation of damage after five doses of UVB we saw a significant reduction in the amount of damage induced after the final dose compared with the initial dose. The relevance of these observations is discussed in the context of melanoma susceptibility and UVB thresholds.  相似文献   

12.
The induction of DNA breaks by UVA (320-400 nm) in the nucleus of normal human melanocytes in culture was investigated using single cell gel electrophoresis, also called the comet assay. Endogenous pigment and/or melanin-related molecules were found to enhance DNA breakage: comets were more intense in melanocytes than in fibroblasts, in cells with high melanin content or after stimulation of melanogenesis by supplying tyrosine in the culture medium. After UVA doses where strong comets were observed, neither cytotoxicity nor stimulation of tyrosinase activity were detected. However, the accumulation of p53 protein suggested that cells reacted to genotoxic stress under these experimental conditions. The same approach was used to compare two sunscreens with identical sun protection factors but different UVA protection factors. The results presented in this paper suggest that human melanocytes may be used as a target cell to evidence broadspectrum photoprotection. Moreover, these data appear to be helpful in getting a better understanding of the role of sunlight in the initiating steps of melanocyte transformation.  相似文献   

13.
Melanocytes play a central role in the response of skin to sunlight exposure. They are directly involved in UV-induced pigmentation as a defense mechanism. However, their alteration can lead to melanoma, a process where the role of sun overexposure is highly probable. The transformation process whereby UV damage may result in melanoma initiation is poorly understood, especially in terms of UV-induced genotoxicity in pigmented cells, where melanin can act either as a sunscreen or as a photosensitizer. The aim of this study was to analyze the behavior of melanocytes from fair skin under irradiation mimicking environmental sunlight in terms of spectral power distribution. To do this, normal human Caucasian melanocytes in culture were exposed to simulated solar UV (SSUV, 300-400 nm). Even at relatively high doses (until 20 min exposure, corresponding to 12 kJ/m2 UV-B and 110 kJ/m2 UV-A), cell death was limited, as shown by cell viability and low occurrence of apoptosis (caspase-3 activation). Moreover, p53 accumulation was three times lower in melanocytes than in unpigmented cells such as fibroblasts after SSUV exposure. However, an important fraction of melanocyte population was arrested in G2-M phase, and this correlated well with a high induction level of the gene GADD45, 4 h after exposure. Among the genes involved in DNA repair, gene XPC was the most inducible because its expression increased more than two-fold 15 h after a 20 min exposure, whereas expression of P48 was only slightly increased. In addition, an early induction of Heme Oxygenase 1 (HO1) gene, a typical response to oxidative stress, was also observed for the first time in melanocytes. Interestingly, this induction remained significant when melanocytes were exposed to UV-A radiation only (320-400 nm), and stimulation of melanogenesis before irradiation further increased HO1 induction. These results were obtained with normal human cells after exposure to SSUV radiation, which mimicked natural sunlight. They provide new data related to gene expression and suggest that melanin in light skin could contribute to sunlight-induced genotoxicity and maybe to melanocyte transformation.  相似文献   

14.
Normal melanocytes produce specialized subcellular organelles called melanosomes within which the biochemical processes of melanogenesis occurs. During sunlight-induced melanogenesis, the melanocyte-specific enzyme tyrosinase catalyzes the oxidative polymerization of 3,4-dihydroxyphenyl-alanine (DOPA) to melanin. Nucleophilic addition of cysteine to tyrosinase-generated dopaquinone leads to the formation of cysteinyldopas, precursors of pheomelanin and excreted by-products of eumelanogenesis. Under conditions of low sulfhydryl content, dopaquinone undergoes a 1,4 intramolecular cycloaddition to yield, after further oxidation, 5,6-dihydroxyindoles and/or 5,6-dihydroxy-2-carboxyindoles. These indolic melanogenic intermediates and their O-methylated metabolites, like cysteinyldopas, are excreted by actively pigmenting as well as dormant melanocytes. Indeed, it has been determined that in humans, the serum and urine concentrations of these melanogenic metabolites increase dramatically following exposure to sunlight, UVA (315-400 nm), UVB (290-315 nm) exposure, as well as during PUVA therapy and in melanoma patients, and thus have proved to be excellent biochemical markers of normal and pathological melanocyte function. While controlled light exposure or PUVA therapy generally lead to 100-300% increases in 5-S-cysteinyldopa (5SCD) and 5-methoxy-6-hydroxyindole-2-carboxylic acid (6HMICA) serum levels (normal concentration about 4–16 nmol l-1), the local concentrations in the skin and especially in the actively pigmenting melanocyte may be as high as 200 μM. Evidence is presented to document that a number of catecholic melanin precursors, including cysteinyldopas and dihydroxyindoles, are photochemically unstable in the presence of biologically relevant ultraviolet radiation (i.e. wavelengths ± 300 nm). Initial photochemical processes involve free radical production; continued photolysis yields polymeric photoproducts. Radicals produced during melanogenic metabolite photolysis have been identified by ESR spin trapping, laser flash photolysis and pulse radiolysis techniques and include hydrated electrons (eaq), hydrogen atoms (H'), hydroxyl radicals (OH), semiquinones, aryl thiyl (ArS), and alanyl carbon-based radicals. In vitro investigations of the potential photobiological significance of these reactions have demonstrated photolysis of cysteinyldopas may lead to photoinitiated DNA binding and single strand break induction. The above mentioned radical species may also damage proteins and initiate lipid peroxidation. Definitive evidence for the occurrence of these phototoxic reactions in vivo is currently unavailable, however our in vitro studies suggest a possible role for melanogenic metabolite photolysis in acute and chronic solar responses of human skin.  相似文献   

15.
We compared the induction of pyrimidine dimer densities after UV-irradiation in mouse melanoma cells before and after treatment with cholera toxin. Treatment with cholera toxin stimulated tyrosinase activity up to 50-fold, leading to a marked, visually apparent increase in cellular melanin concentrations. Irradiation of treated and untreated cells was therefore designed to establish whether intracellular melanin protected cells from UV-induced DNA damage. In experiments described here, we determined cytosine-thymine (C-T) as well as thymine-thymine dimer levels (T-T) by high pressure liquid chromatography in cholera toxin-treated and untreated Cloudman S91 mouse melanoma cells after irradiation with UVC (less than 290 nm) and UVB light (290-320 nm). Surprisingly, induction of melanization had no effect on the formation of pyrimidine dimers by UVC or UVB irradiation. These results indicate that de novo melanin pigmentation induced via the c-AMP pathway is not involved in protection against UV-induced thymine-containing pyrimidine dimers. In separate experiments, irradiation of toxin-treated and untreated mouse melanoma cells with UVC or UVB light produced a 20-30% lower dimer density compared to irradiated human skin fibroblasts. This finding suggests that melanin has some protection properties against UV-induced pyrimidine dimers, although the exact defense mechanism seems highly complex.  相似文献   

16.
There remains an unmet need for skin tissue-based assays for the measurement of the UVA protection and efficacy of sunscreens. Here we describe development of a novel electron paramagnetic resonance assay that uses the photogeneration of reactive melanin radical as a measure of UV light penetration to melanocytes in situ in skin. We have used areas of focal melanocytic hyperplasia in the skin of Monodelphis domestica to model the human nevus. We show that we are able to use this assay to determine the monochromatic protection factors (mPF) of research and commercial sunscreens at specific narrow wavebands of UVB, UVA and blue visible light. Both commercial sunscreens, a sun protection factor (SPF) 4 and an SPF 30 product, had mPFs in the UVB range that correlated well with their claimed SPF. However, their mPF in the UVA ranges were only about one-third of claimed SPF. This technique can be used to design and assay sunscreens with optimally balanced UVA and UVB protection.  相似文献   

17.
Here, we describe the reliable method for the detection and quantitation of a pheomelanin component in melanin pigments. Synthetic melanins with various contents of pheomelanin‐type structural units were thermally degraded, and the multiple reaction monitoring mode was applied to detect the pheomelanin markers in the pyrolysates by GC/MS/MS. The method allowed the specific detection and quantitation of a pheomelanin component in melanin with the incorporation of pheomelanin‐type units as low as 0.05%. Considering highly universal character of the pheomelanin markers, the method could be applied for structural studies of natural melanin pigments being mixtures of eumelanin and pheomelanin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The observation that fair-skinned individuals are more susceptible to skin cancers is commonly explained by invoking an enhanced photoreactivity of the red melanin, pheomelanin compared with the black melanin, eumelanin. For the wavelength range from 500 to 1000 nm, pump-probe spectroscopic measurements reveal the photoexcitation of pheomelanin by UVA light that generates an immediate (< 100 fs) transient absorption centered at 780 nm. Using a tunable femtosecond excitation source, the action spectrum between 300 and 390 nm for generation of the primary intermediate was measured. Similar action spectra are found for the sample with molecular weight (MW) between 1000 and 10 000 and the one with MW > 10 000 fractions of pheomelanin, indicating that the reactive chromophore has a low MW but is present and its photophysics is similar in the aggregated pigment. The shape of the action spectrum differs from the absorption spectrum of bulk melanin and mass-selected fractions but resembles reported absorption spectrum of benzothiazines, oxidation products of 5-S-cysteinyl-dopa, which are formed along the biosynthetic pathway of pheomelanin.  相似文献   

19.
Abstract— An immunochemical assay, i.e. sandwich enzyme-linked immunosorbent assay, has been modified to detect UV-induced damage in cellular DNA of monolayer-grown human melanocytes. The method is based on the binding of a monoclonal antibody to single-stranded DNA. The melanocytes derived from human foreskin of skin type II individuals were suspended and exposed to UVA, UVB, solar-simulated light or γ-rays. Following physiological doses of UVA, UVB or solar-simulated light, a dose-related DNA unwinding comprising a considerable number of single-strand breaks (ssb) was observed. No correlation was found between different seeded cell densities or different culturing periods and the UVA sensitivity of the cells. After UVA irradiation, 0.07 ssb/1010 Da/kJ/m2 were detected and after UVB irradiation 1.9 ssb/1010 Da/kJ/m2 were seen. One minimal erythema dose of solar-simulated light induced 2.25 ssb/1010 Da. Our results from melanocytes expressed in ssb/Da DNA are comparable and have the same sensitivity toward UVA as well as toward UVB as nonpigmented skin cells. As low doses of UVA have already been shown to induce detectable numbers of ssb, this assay is of great interest for further investigations about the photoprotecting and/or photosensitizing effects of melanins in human melanocytes derived from different skin types.  相似文献   

20.
We investigated the inhibitory effects of a novel amphiphilic ascorbic derivative, disodium isostearyl 2-O-L-ascorbyl phosphate (VCP-IS-2Na), synthesized from a hydrophilic ascorbic derivative, sodium-2-O-L-ascorbyl phosphate (VCP-Na), on melanogenesis in cultured human melanoma cells, normal human melanocytes, and three-dimensional cultured human skin models. Melanin synthesis in melanoma cells treated with VCP-IS-2Na at 300 muM and melanocytes treated with VCP-IS-2Na at 100 muM decreased to 23% and 52% of that in non-treated cells, respectively, and the cell viability was not affected. VCP-IS-2Na also significantly suppressed the cellular tyrosinase activity of melanoma cells and melanocytes. Melanin synthesis in human skin models was evaluated by macro- and microscopic observations of its pigmentation and quantitative measurements of melanin. Treatment of the human skin models with 1.0% VCP-IS-2Na did not inhibit cell viability, while melanin synthesis was decreased to 21% of that in the control. In contrast, L-ascorbic acid (VC) and VCP-Na did not seem to inhibit melanin synthesis and cellular tyrosinase activity. These results indicate that VCP-IS-2Na may be an effective whitening agent for the skin, and we expect the application of VCP-IS-2Na in the cosmetic industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号