首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We investigate the elastic and the thermodynamic properties of nanolaminate V2GeC by using the ab initio pseudopotential total energy method. The axial compressibility shows that the c axis is always stiffer than the a axis. The elastic constant calculations demonstrate that the structural stability is within 0-800 GPa. The calculations of Young's and shear moduli reveal the softening behaviour at about 300 GPa. The Possion ratio makes a higher ionic or a weaker covalent contribution to intra-atomic bonding and the degree of ionicity increases with pressure. The relationship between brittleness and ductility shows that V2GeC is brittle in ambient conditions and the brittleness decreases and ductility increases with pressure. Moveover, we find that V2GeC is largely isotropic in compression and in shear, and the degree of isotropy decreases with pressure. The Gr黱eisen parameter, the Debye temperature and the thermal expansion coefficient are also successfully obtained for the first time.  相似文献   

2.
Structural, electronic, elastic and mechanical properties of Cd and Hg based rare earth intermetallics (RECd and REHg; RE=Sc, La and Yb) have been investigated using the full-potential linearized augmented plane-wave (FP-LAPW) method within the density-functional theory (DFT). The ground state properties such as lattice constant (a0), bulk modulus (B) and its pressure derivative (B′) have been obtained using optimization method and are found in good agreement with the available experimental results. The calculated enthalpy of formation shows that LaHg has the strongest alloying ability and structural stability. The electronic band structures and density of states reveal the metallic character of these compounds. The structural stability mechanism is also explained through the electronic structures of these compounds. The chemical bonding between rare earth atoms and Cd, Hg is interpreted by the charge density plots along (1 1 0) direction. The elastic constants are predicted from which all the related mechanical properties like Poisson’s ratio (σ), Young’s modulus (E), shear modulus (GH) and anisotropy factor (A) are calculated. The ductility/brittleness of these intermetallics is predicted. Chen’s method has been used to predict the Vicker’s hardness of RECd and REHg compounds. The pressure variation of the elastic constants is also reported in their B2 phase.  相似文献   

3.
We have performed a first-principle calculation of the structural, electronic and high pressure properties of RuSr2GdCu2O8, a ferromagnetic superconductor, by employing a full-potential linearized augmented plane-wave method within the density-functional theory. The effect of pressure was achieved by varying the volume of the unit cell with constant a:b:c ratio. The experimentally observed anti-phase rotation of RuO6 octahedra has been attributed to the residual forces on ORu which results in shear strain in the RuO2 layer. Partial charge analysis shows that applying pressure up to 6 GPa leads to hole creation in the CuO2 sheets which causes increase in the superconducting transition temperature. We have estimated the Curie temperature T M of this compound in the mean-field approximation using Heisenberg model with first-nearest neighbor exchange interactions determined from DFT calculations for parallel and anti-parallel spin configurations of Ru moment in RuO2 planes. The effect of pressure causes the magnetic moment of Ru atoms to decrease due to the increase of hybridization between the adjacent Ru atoms. The calculated exchange splitting in Cu d x 2 - y 2 states increases slightly with pressure but it is still very small that it does not affect superconductivity, and the hole doping mechanism is dominant.  相似文献   

4.
We investigate the elastic and the thermodynamic properties of nanolaminate V2GeC by using the ab initio pseudopotential total energy method.The axial compressibility shows that the c axis is always stiffer than the a axis.The elastic constant calculations demonstrate that the structural stability is within 0-800 GPa.The calculations of Young’s and shear moduli reveal the softening behaviour at about 300 GPa.The Possion ratio makes a higher ionic or a weaker covalent contribution to intra-atomic bonding and the degree of ionicity increases with pressure.The relationship between brittleness and ductility shows that V2GeC is brittle in ambient conditions and the brittleness decreases and ductility increases with pressure.Moveover,we find that V2GeC is largely isotropic in compression and in shear,and the degree of isotropy decreases with pressure.The Grüneisen parameter,the Debye temperature and the thermal expansion coefficient are also successfully obtained for the first time.  相似文献   

5.
The structural properties of Na2RuO3 under pressure are studied using density functional theory within the nonmagnetic generalized gradient approximation (GGA). We found that one may expect a structural transition at ~3 GPa. This structure at the high-pressure phase is exactly the same as the low-temperature structure of Li2RuO3 (at ambient pressure) and is characterized by the P21/m space group. Ru ions form dimers in this phase and one may expect strong modification of the electronic and magnetic properties in Na2RuO3 at pressure higher than 3 GPa.  相似文献   

6.
The elastic, electronic and thermodynamic properties of fluoro-perovskite KZnF3 have been calculated using the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated with the generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE). Also, we have used the Engel and Vosko GGA formalism (GGA-EV) to improve the electronic band structure calculations. The calculated structural properties are in good agreement with available experimental and theoretical data. The elastic constants C ij are calculated using the total energy variation with strain technique. The shear modulus, Young’s modulus, Poisson’s ratio and the Lamé coefficients for polycrystalline KZnF3 aggregates are estimated in the framework of the Voigt-Reuss-Hill approximations. The ductility behavior of this compound is interpreted via the calculated elastic constants C ij . Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density. The thermodynamic properties are predicted through the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variation of bulk modulus, lattice constant, heat capacities and the Debye temperature with pressure and temperature are successfully obtained.  相似文献   

7.
The structural, elastic, and electronic properties of SrZrN2 under pressure up to 100?GPa have been carried out with first-principles calculations based on density functional theory. The calculated lattice parameters at 0?GPa and 0?K by using the GGA-PW91-ultrasoft method are in good agreement with the available experimental data and other previous theoretical calculations. The pressure dependence of the elastic constants and the elastic-dependent properties of SrZrN2, such as bulk modulus B, shear modulus G, Young's modulus E, Debye temperature Θ, shear and longitudinal wave velocity VS and VL, are also successfully obtained. It is found that all elastic constants increase monotonically with pressure. When the pressure increases up to 140?GPa, the obtained elastic constants do not satisfy the mechanical stability criteria and a phase transition might has occurred. Moreover, the anisotropy of the directional-dependent Young's modulus and the linear compressibility under different pressures are analysed for the first time. Finally, the pressure dependence of the total and partial densities of states and the bonding property of SrZrN2 are also investigated.  相似文献   

8.
ABSTRACT

The influences of pressure on structural, elastic, electronic and optical properties of α-RDX under pressure from 0 to 40?GPa have been investigated by performing first-principles calculations. The obtained structural parameters based on the GGA-PBE+G calculations are consistent with previous experimental values. The results of B/G, C12-C44 and Poisson's ratio show that α-RDX has changed to ductility under pressure between 0 and 5?GPa. The obvious rotation of NO2 group in the equatorial position appears, especially in the range of pressure from 10 to 15?GPa, which influences the elastic and mechanical properties of α-RDX. Moreover, we find that the electrons of α-RDX become more active under higher pressure by comparing the curves of DOS under different pressure. Furthermore, the anisotropy of optical properties under different pressures has been shown.  相似文献   

9.
We have used special quasirandom structure to study the structural, electronic, elastic and mechanical properties of RuAl1−xGax alloys for different compositions (x=0, 0.25, 0.50, 0.75 and 1) using a FP-LAPW method based on Density Functional Theory. The exchange and correlation potential is treated within the generalized gradient approximation. Ground state properties such as lattice constant (a0), bulk modulus (B), its pressure derivative (B′) and elastic constants are calculated. The ductility of these alloys has been analyzed by calculating the ratio of B/GH, Cauchy pressure (C12C44) and Frantsevich rule. From this study RuAl and RuGa are found to be brittle, but their alloys show ductile behavior; RuAl0.50Ga0.50 is found to be most ductile. Mechanical properties such as Poisson's ratio (σ), Young's moduli (E), and the ratio of elastic anisotropy factor (A) are estimated. We have also correlated the ductility and bonding behavior of these alloys.  相似文献   

10.
Structural, elastic, electronic and thermal properties of the MAX phase Nb2SiC are studied by means of a pseudo-potential plane-wave method based on the density functional theory. The optimized zero pressure geometrical parameters are in good agreement with the available theoretical data. The effect of high pressure, up to 40 GPa, on the lattice constants shows that the contractions along the c-axis were higher than those along the a-axis. The elastic constants Cij and elastic wave velocities are calculated for monocrystal Nb2SiC. Numerical estimations of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, average sound velocity and Debye temperature for ideal polycrystalline Nb2SiC aggregates are performed in the framework of the Voigt-Reuss-Hill approximation. The band structure shows that Nb2SiC is an electrical conductor. The analysis of the atomic site projected densities and the charge density distribution shows that the bonding is of covalent-ionic nature with the presence of metallic character. The density of states at Fermi level is dictated by the niobium d states; Si element has a little effect. Thermal effects on some macroscopic properties of Nb2SiC are predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variations of the primitive cell volume, volume expansion coefficient, bulk modulus, heat capacity and Debye temperature with pressure and temperature in the ranges of 0-40 GPa and 0-2000 K are obtained successfully.  相似文献   

11.
The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν are calculated by the Voigt–Reuss–Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature Θ D calculated from elastic modulus increases along with the pressure.  相似文献   

12.
Using first-principles calculations, we predict mechanical and thermodynamic properties of both Mg17Al12 and Mg2Sn precipitates in Mg–Al–Sn alloys. The elastic properties including the polycrystalline bulk modulus, shear modulus, Young’s modulus, Lame’s coefficients and Poisson’s ratio of both Mg17Al12 and Mg2Sn phases are determined with the Voigt–Reuss–Hill approximation. Our results of equilibrium lattice constants agree closely with previous experimental and other theoretical results. The ductility and brittleness of the two phases are characterized with the estimation from Cauchy pressure and the value of B/G. Mechanical anisotropy is characterized by the anisotropic factors and direction-dependent Young’s modulus. The higher Debye temperature of Mg17Al12 phase means that it has a higher thermal conductivity and strength of chemical bonding relative to Mg2Sn. The anisotropic sound velocities also indicate the elastic anisotropies of both phase structures. Additionally, density of states and Mulliken population analysis are performed to reveal the bonding nature of both phases. The calculations associated with phonon properties indicate the dynamical stability of both phase structures. The temperature dependences of thermodynamic properties of the two phases are predicted via the quasi-harmonic approximation.  相似文献   

13.
The structural, elastic, electronic and optical properties of CaXO3 compounds with the cubic perovskites structure have been investigated, by employing a first principles method, using the plane wave pseudo potential calculations (PP-PW), based on the density functional theory (DFT), within the local density approximation (LDA). The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk, shear and Young’s moduli for ideal monocrystalline and for polycrystalline CaXO3 aggregates which we have classified as ductile in nature. Band structures reveal that these compounds are indirect energy band gap (R-G) semiconductors; the analysis of the site and momentum projected densities, valence charge density bond length, bond population and Milliken charges, shows that bonding is of covalent–ionic nature. We have found that the elastic constants C11, C12, C44 are in good correlation with the bonding properties. The optical constants, including the dielectric function, optical reflectivity, refractive index and electron energy loss, are calculated for radiation up to 20 eV.  相似文献   

14.
The effects of hydrostatic pressures on the electronic, thermoacoustic and elastic anisotropies of SnO2 in the rutile structure is analyzed up to 18 GPa. It is found that the polycrystalline bulk modulus B increases from 227 to 312 GPa between 0 and 18 GPa while the Young and shear moduli slightly decrease with pressures. The resulting polycrystalline ductility increases with pressures. The speed of the sound for longitudinal waves increases with pressure, while the transverse polarizations and the Debye temperature decrease. Large crystal anisotropy for the shear planes {001} between ? 110? and ? 010? directions under pressures, associated with the phase transition to the Cl2Ca, is found.  相似文献   

15.
Using the density functional theory (DFT) method, the electronic and mechanical properties of perovskites FeBO3 (B = Ti, Mn, Cr) nanostructures were studied in the pressure range of 0–100 GPa. The band structure studies show the change in the band structure upon substitution of different B cation in FeBO3 perovskite structure. The density of states spectrum gives the perception of change in the electronic properties of FeBO3 with the substitution of B cation. The bulk, shear and Young's moduli were calculated and an increase in the moduli is noticed. Moreover, the hardness increases under high pressure. The high-pressure studies of FeBO3 perovskite nanostructures are explored at atomistic level. The findings show that ductility and hardness of FeBO3 get increased upon an increase in the applied pressure. The substitution of Ti, Mn and Cr on FeBO3 shows a significant change in the electronic and mechanical properties.  相似文献   

16.
Using First-principle calculations, we have studied the structural, electronic and elastic properties of M2TlC, with M = Ti, Zr and Hf. Geometrical optimization of the unit cell is in good agreement with the available experimental data. The effect of high pressures, up to 20 GPa, on the lattice constants shows that the contractions are higher along the c-axis than along the a axis. We have observed a quadratic dependence of the lattice parameters versus the applied pressure. The band structures show that all three materials are electrical conductors. The analysis of the site and momentum projected densities shows that bonding is due to M d-C p and M d-Tl p hybridizations. The M d-C p bonds are lower in energy and stiffer than M d-Tl p bonds. The elastic constants are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus and Poisson’s ratio for ideal polycrystalline M2TlC aggregates. We estimated the Debye temperature of M2TlC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of Ti2TlC, Zr2TlC, and Hf2TlC compounds that requires experimental confirmation.   相似文献   

17.
Abstract

In this study, the elastic, electronic, optical and thermoelectric properties of CaTiO3 perovskite oxide have been investigated using first-principles calculations. The generalised gradient approximation (GGA) has been employed for evaluating structural and elastic properties, while the modified Becke Johnson functional is used for studying the optical response of this compound. In addition to ground state physical properties, we also investigate the effects of pressure (0, 30, 60, 90 and 120 GPa) on the electronic structure of CaTiO3. The application of pressure from 0 to 90 GPa shows that the indirect band gap (Γ-M) of CaTiO3 increases with increasing pressure and at 120 GPa it spontaneously decreases transforming cubic CaTiO3 to a direct (Γ-Γ) band gap material. The complex dielectric function and some optical parameters are also investigated under the application of pressures. All the calculated optical properties have been found to exhibit a shift to the higher energies with the increase of applied pressure suggesting potential optoelectronic device applications of CaTiO3. The thermoelectric properties of CaTiO3 have been computed at 0 GPa in terms of electrical conductivity, thermal conductivity and Seebeck coefficient.  相似文献   

18.
Structural parameters as well as elastic, electronic, bonding and optical properties of monoclinic ZrO2 were investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The calculated structural properties and independent elastic constants of monoclinic ZrO2 are in favorable agreement with previous work. We have derived the bulk and shear moduli, Young’s modulus and Poisson coefficients for monoclinic ZrO2 and estimated the Debye temperature of monoclinic ZrO2 from acoustic velocity. Electronic and bonding properties are studied from the calculation of band structure, densities of states and charge densities. Furthermore, in order to clarify the mechanism of optical transitions in monoclinic ZrO2, the dielectric functions are calculated and analyzed by means of the electronic structure, which shows significant optical anisotropy in the components of polarization directions (1 0 0), (0 1 0) and (0 0 1).  相似文献   

19.
赵文杰  王渊旭 《中国物理 B》2009,18(9):3934-3939
This paper studies the elastic and electronic structure properties of two new low-energy structures of PdN2 and PtN2 by first-principles calculations.It finds that tetragonal and monoclinic structures are more stable than a pyrite one.The always positive eigenvalues of the elastic constant matrix confirm that both the tetragonal and monoclinic structures are elastically stable.The origin of the low bulk modulus of the two structures is discussed.The results of the calculated density of states show that both of the two low-energy structures are metallic.  相似文献   

20.
Using ab initio calculations, we have studied the structural, elastic and electronic properties of XNCa3, with X=Ge, Sn and Pb. Geometrical optimization of the unit cell are in agreement with the available experimental data. The band structures show that all studied materials are electrical conductors. The analysis of the site and momentum projected densities, charge transfer and total valence charge density shows that the chemical bonding in XNCa3 compounds is of covalent–ionic nature with the presence of metallic character. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk, shear and Young’s moduli for ideal polycrystalline XNCa3 aggregates. By analysing the ratio between the bulk and shear moduli, we conclude that XNCa3 compounds are brittle in nature. We estimated the Debye temperature of XNCa3 from the average sound velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号