首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption (at a low temperature) of nitrogen on the protonic zeolite H-Y results in hydrogen bonding of the adsorbed N2 molecules with the zeolite Si(OH)Al Brønsted-acid groups. This hydrogen-bonding interaction leads to activation, in the infrared, of the fundamental N–N stretching mode, which appears at 2334 cm−1. From infrared spectra taken over a temperature range, the standard enthalpy of formation of the OH···N2 complex was found to be ΔH0 = −15.7(±1) kJ mol−1. Similarly, variable-temperature infrared spectroscopy was used to determine the standard enthalpy change involved in formation of H-bonded CO complexes for CO adsorbed on the zeolites H-ZSM-5 and H-FER; the corresponding values of ΔH0 were found to be −29.4(±1) and −28.4(±1) kJ mol−1, respectively. The whole set of results was analysed in the context of other relevant data available in the literature.  相似文献   

2.
Thermophysical and thermochemical studies have been carried out for crystalline parabanic acid. The thermophysical study was made by differential scanning calorimetry, DSC, over the temperature interval between T = (263 and 473) K. Two phase transitions were found: at T = (392.3 ± 1.6) K with the enthalpy of transition of (2.1 ± 0.4) kJ · mol−1 and at T = (509.8 ± 1.5) K, when the compound was scanned to its fusion temperature. The standard (p = 0.1 MPa) molar enthalpy of formation, at T = 298.15 K, for crystalline parabanic acid was determined using static-bomb combustion calorimetry as −(590.2 ± 1.0) kJ · mol−1. The standard molar enthalpy of sublimation, at T = 298.15 K, was derived from the variation of their vapour pressures, measured by the Knudsen-effusion method, with the temperature. These two thermochemical parameters yielded the standard molar enthalpy of formation in the gaseous phase, at T = 298.15 K, as −(470.8 ± 1.2) kJ · mol−1.  相似文献   

3.
The diffusion of strontium and zirconium in single crystal BaTiO3 was investigated in air at temperatures between 1000 °C and 1250 °C. Thin films of SrTiO3, deposited by spin coating a precursor solution and thin films of zirconium, deposited onto the sample surfaces by sputtering, were used as diffusion sources. The diffusion profiles were measured by SIMS depth profiling on a time-of-flight secondary ion mass spectrometer (ToF-SIMS). The diffusion coefficients of strontium and zirconium were given by DSr = 3.6 × 102.0±4.4 exp[−(543 ± 117) kJ mol−1/(RT)] cm2 s−1 and DZr = 1.1 × 101.0±2.1 exp[−(489 ± 56) kJ mol−1/(RT)] cm2 s−1. The results are discussed in terms of different diffusion mechanisms in the perovskite structure of BaTiO3.  相似文献   

4.
The standard (p = 0.1 MPa) molar enthalpies of formation of 2-, 3- and 4-cyanobenzoic acids were derived from their standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The Calvet high temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of 2- and 3-cyanobenzoic acids. The standard molar enthalpies of formation of the three compounds, in the gaseous phase, at T = 298.15 K, have been derived from the corresponding standard molar enthalpies of formation in the condensed phase and standard molar enthalpies for phase transition. The results obtained are −(150.7 ± 2.0) kJ · mol−1, −(153.6 ± 1.7) kJ · mol−1 and −(157.1 ± 1.4) kJ · mol−1 for 2-cyano, 3-cyano and 4-cyanobenzoic acids, respectively. Standard molar enthalpies of formation were also estimated by employing two different methodologies: one based on the Cox scheme and the other one based on several different computational approaches. The calculated values show a good agreement with the experimental values obtained in this work.  相似文献   

5.
Differential scanning calorimetry and high temperature oxide melt solution calorimetry are used to study enthalpy of phase transition and enthalpies of formation of Cu2P2O7 and Cu3(P2O6OH)2. α-Cu2P2O7 is reversibly transformed to β-Cu2P2O7 at 338–363 K with an enthalpy of phase transition of 0.15 ± 0.03 kJ mol−1. Enthalpies of formation from oxides of α-Cu2P2O7 and Cu3(P2O6OH)2 are −279.0 ± 1.4 kJ mol−1 and −538.8 ± 2.7 kJ mol−1, and their standard enthalpies of formation (enthalpy of formation from elements) are −2096.1 ± 4.3 kJ mol−1 and −4302.7 ± 6.7 kJ mol−1, respectively. The presence of hydrogen in diphosphate groups changes the geometry of Cu(II) and decreases acid–base interaction between oxide components in Cu3(P2O6OH)2, thus decreasing its thermodynamic stability.  相似文献   

6.
The kinetics of sublimation of bis(2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II), [Cu(tmhd)2] was studied by non-isothermal and isothermal thermogravimetric (TG) methods. The non-isothermal sublimation activation energy values determined following the procedures of Friedman, Kissinger, and Flynn–Wall methods yielded 93 ± 5, 67 ± 2, and 73 ± 4 kJ mol−1, respectively and the isothermal sublimation activation energy was found to be 97 ± 3 kJ mol−1 over the temperature range of 375–435 K. The dynamic TG run proved the complex to be completely volatile and the equilibrium vapor pressure (pe)T of the complex over the temperature range of 375–435 K determined by a TG-based transpiration technique, yielded a value of 96 ± 2 kJ mol−1 for its standard enthalpy of sublimation (ΔsubH°).  相似文献   

7.
The combustion energies for 2-acetylpyrrole (cr) and 2-acetylfuran (cr) were determined using a static bomb calorimeter, whereas the combustion energy of 2-acetylthiophene (l) was determined with a rotating bomb calorimeter; both calorimeters have been recently described. The molar combustion energies obtained were: −(3196.1 ± 0.6) kJ mol−1 for 2-acetylpyrrole, −(2933.8 ± 0.7) kJ mol−1 for 2-acetylfuran, and −(3690.4 ± 0.8) kJ mol−1 for 2-acetylthiophene. From these combustion energy values, the standard molar enthalpies of formation in the condensate phase were obtained as: −(163.51 ± 0.97) kJ mol−1, −(283.50 ± 1.06) kJ mol−1 and −(123.93 ± 1.15) kJ mol−1, respectively. The obtained values of combustion and formation enthalpies of 2-acetylthiophene are in concordance with the reported previously. For the two last compounds, polyethene bags were used as an auxiliary material in the combustion experiments. The heat capacities and purities of the compounds were determined using a differential scanning calorimeter.  相似文献   

8.
The reaction between the magnesium β-diketonate complex Mg(tmhd)2(H2O)2 and 1 equiv. of N,N,N′,N′-tetramethylethylenediamine (tmeda = Me2NCH2CH2NMe2) in hexane at room temperature yielded Mg(tmhd)2(tmeda). The standard enthalpy of sublimation (83.2 ± 2.3 kJ mol−1) and entropy of sublimation (263 ± 6.3 J mol−1 K−1) of Mg(tmhd)2(tmeda) were obtained from the temperature dependence vapour pressure, determined by adopting a horizontal dual arm single furnace thermogravimetric analyser as a transpiration apparatus. From the observed melting point depression DTA, the standard enthalpy of fusion (58.3 ± 5.2 kJ mol−1) was evaluated, using the ideal eutectic behaviour of Mg(tmhd)2(tmeda) as a solvent with bis(2,4-pentanedionato)magnesium(II), Mg(acac)2 as a non-volatile solute.  相似文献   

9.
The binding of sulfamethoxazole (SMZ) to bovine serum albumin (BSA) was investigated by spectroscopic methods viz., fluorescence, FT-IR and UV–vis absorption techniques. The binding parameters have been evaluated by fluorescence quenching method. The thermodynamic parameters, ΔH°, ΔS°and ΔG° were observed to be −58.0 kJ mol−1, −111 J K−1 mol−1 and −24 kJ mol−1, respectively. These indicated that the hydrogen bonding and weak van der Waals forces played a major role in the interaction. Based on the Forster's theory of non-radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (SMZ) was evaluated and found to be 4.12 nm. Spectral results showed the binding of SMZ to BSA induced conformational changes in BSA. The effect of common ions and some of the polymers used in drug delivery for control release was also tested on the binding of SMZ to BSA. The effect of common ions revealed that there is adverse effect on the binding of SMZ to BSA.  相似文献   

10.
The kinetic parameters, namely the triplet activation energy EA, model function f(α) or g(α) and pre-exponential factor A of the oxidation of Constantan tapes in 1 atm of oxygen have been determined from both isothermal and non-isothermal thermogravimetry. For isothermal experiments, with temperatures ranging from 650 °C to 900 °C, the results from direct conversion of the weight increase as a function of the time and curve fitting, are compared with the isoconversion method. For the non-isothermal experiments, with heating rates from 1 °C/min to 20 °C/min, comparison is made between the Friedman differential method and the integral methods of Kissinger, Ozawa and Li and Tang. All methods give apparent activation energies with relative standard deviations as low as 3%. The results converge to the identification of three stages in the oxidation behaviour. A parabolic law for reaction extents α below 15% with EA = 246 ± 7 kJ mol−1, ln A = 14.3, is followed by two linear stages with EA = 244 ± 4 kJ mol−1 and ln A = 15.3 for 0.18 < α < 0.35 and EA = 228 ± 15 kJ mol−1, ln A ≈ 13 for α > 45%, respectively.  相似文献   

11.
The standard partial molar entropy of the aqueous tetrabutylammonium cation, not known previously, has now been obtained, based on the molar entropy of two of its crystalline salts, the iodide and the tetraphenylborate, recently determined experimentally for this purpose. The calculation required also published molar enthalpies of solution and solubilities of these two salts as well as of the perchlorate. The choice of the anions depended mainly on the limited solubilities of the examined salts in water, facilitating the estimation of the relevant activity coefficients. The result is S(Bu4N+, aq) = (380 ± 20) J · K−1 · mol−1 at T = 298.15 K, on the mol · dm−3 scale and based on S(H+, aq) = (−22.2 ± 1.2) J · K−1 · mol−1 (yielding the ‘absolute’ value). The molar entropy of this cation in the ideal gas standard state, S(Bu4N+, g) = (798 ± 8) J · K−1 · mol−1 then yielded the molar entropy of hydration ΔhydS (Bu4N+) = (−418 ± 23) J · K−1 · mol−1.  相似文献   

12.
Equilibrium, kinetics and thermodynamic aspects of sorption of Promethazine hydrochloride (PHCl) onto iron rich smectite (IRS) from aqueous solution were investigated. The effect of pH on sorption of PHCl onto IRS was also found out. Experimental data were evaluated by using Langmuir, Freundlich and Dubinin–Raduschkevich (DR) isotherm equations. Freundlich and DR equations provided better compatibility than Langmuir equation. Besides, it was determined that the maximum sorption of PHCl takes place at about pH 5. From kinetic studies, it was obtained that sorption kinetics follow pseudo-second-order kinetic model for PHCl sorption onto IRS. When thermodynamic studies are concerned, the values of activation energy (Ea), ΔG°, ΔH° and ΔS° were obtained. ΔG° values are in the range of −8.84 and −9.45 kJ mol−1 indicating spontaneous nature of physisorption. The negative value of the ΔH° (−3.20 kJ mol−1) indicates exothermic nature of adsorption. FTIR analysis and SEM observations of IRS and PHCl adsorbed IRS were also carried out. Sorption experiments indicate that IRS may be used effectively for the adsorption of PHCl.  相似文献   

13.
18O/16O isotope exchange in combination with SIMS depth profiling was used to investigate oxygen transport in Li2O-deficient single crystalline LiNbO3 in the temperature range 983 ≤ T/K ≤ 1188 at 200 mbar oxygen. Within the limit of experimental error and for the investigated range of temperatures no significant differences between transport parallel and transport perpendicular to the c-axis were found. The following temperature dependencies were determined: for oxygen tracer diffusion D = 6.4 × 10−3exp[−333 kJ/mol/(RT)] m2/s; and for oxygen surface exchange k = 7.8 × 102exp[−288 kJ mol−1/(RT)] m/s. The activation enthalpy obtained for tracer diffusion can be interpreted as the enthalpy of migration of extrinsic oxygen vacancies induced by impurities with lower valency on niobium sites.  相似文献   

14.
Enthalpies for the two proton ionizations of the biochemical buffers N-tris(hydroxymethyl)methyl-4-aminobutanesulfonic acid (TABS), N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid (TAPS) and 3-[N-tris(hydroxymethyl)methylamino]-2-hyroxypropane sulfonic acid (TAPSO) were obtained in water–methanol mixtures with methanol mole fraction (Xm) from 0 to 0.360. The ionization enthalpy for the first proton (ΔH1) of all three buffers was small and exhibited slight changes upon methanol addition. The ionization enthalpy of the second proton (ΔH2) of TABS increased from 39.6 to 49.8 kJ mol−1 and for TAPS from 40.1 to 43.2 kJ mol−1, with a minimum of 38.2 kJ mol−1 at Xm = 0.059. For TAPSO the increase was from 33.1 to 35.6 kJ mol−1 at Xm = 0.194, with measurements at higher Xm precluded by low solubility of TAPSO in methanol rich solvents. The solvent composition was selected so as to include the region of maximum structure enhancement of water by methanol. The results were interpreted in terms of solvent–solvent and solvent–solute interactions.  相似文献   

15.
The α-tocopheroxyl radical was generated voltammetrically by one-electron oxidation of the α-tocopherol anion (r1/2=−0.73 V versus Ag|Ag+) that was prepared by reacting α-tocopherol with Et4NOH in acetonitrile (with Bu4NPF6 as the supporting electrolyte). Cyclic voltammograms recorded at variable scan rates (0.05–10 V s−1), temperatures (−20 to 20°C) and concentrations (0.5–10 mM) were modelled using digital simulation techniques to determine the rate of bimolecular self-reaction of α-tocopheroxyl radicals. The k values were calculated to be 3×103 l mol−1 s−1 at 20°C, 2×103 l mol−1 s−1 at 0°C and 1.2×103 l mol−1 s−1 at −20°C. In situ electrochemical-EPR experiments performed at a channel electrode confirmed the existence of the α-tocopheroxyl radical.  相似文献   

16.
The kinetics of the reaction of the CH3CHBr, CHBr2 or CDBr2 radicals, R, with HBr have been investigated in a temperature-controlled tubular reactor coupled to a photoionization mass spectrometer. The CH3CHBr (or CHBr2 or CDBr2) radical was produced homogeneously in the reactor by a pulsed 248 nm exciplex laser photolysis of CH3CHBr2 (or CHBr3 or CDBr3). The decay of R was monitored as a function of HBr concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature. The reactions were studied separately from 253 to 344 K (CH3CHBr + HBr) and from 288 to 477 K (CHBr2 + HBr) and in these temperature ranges the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1σ + Student’s t values, units in cm3 molecule−1 s−1, no error limits for the third reaction): k(CH3CHBr + HBr) = (1.7 ± 1.2) × 10−13 exp[+ (5.1 ± 1.9) kJ mol−1/RT], k(CHBr2 + HBr) = (2.5 ± 1.2) × 10−13 exp[−(4.04 ± 1.14) kJ mol−1/RT] and k(CDBr2 + HBr) = 1.6 × 10−13 exp(−2.1 kJ mol−1/RT). The energy barriers of the reverse reactions were taken from the literature. The enthalpy of formation values of the CH3CHBr and CHBr2 radicals and an experimental entropy value at 298 K for the CH3CHBr radical were obtained using a second-law method. The result for the entropy value for the CH3CHBr radical is 305 ± 9 J K−1 mol−1. The results for the enthalpy of formation values at 298 K are (in kJ mol−1): 133.4 ± 3.4 (CH3CHBr) and 199.1 ± 2.7 (CHBr2), and for α-C–H bond dissociation energies of analogous compounds are (in kJ mol−1): 415.0 ± 2.7 (CH3CH2Br) and 412.6 ± 2.7 (CH2Br2), respectively.  相似文献   

17.
The N2 and H2 evolution, respectively, were monitored during deposition of Pd and Cu from electroless plating baths to obtain in-process control of the composition during preparation of 3–7 μm thick PdCu membranes on tubular ceramic substrates. Compositions estimated by gas evolution compare favorably to those measured in post-mortem XRD and EDS analyses, mostly differing by not more than 1 at.%. This result suggests that use of gas evolution measurements to enable in-process control of composition to within 1 at.% is feasible. Annealing experiments in an H2 atmosphere demonstrated that, at 893 K, only 48 h are needed to form a stoichiometrically homogeneous, 9.5 μm thick, face centered cubic (fcc) Pd63Cu37 membrane from sequentially deposited layers; at 723 K, the same transformation requires over 2 weeks. The appearance of transient body centered cubic (bcc) and fcc phases with lower Pd contents signaled compositional segregation in the initial stages of alloy formation at 723 and 773 K and could be a source of persistent stoichiometric heterogeneity particularly in bcc PdCu membranes. The H2 fluxes of fcc Pd58Cu42 and Pd70Cu30 membranes were JH2=(1.6±1.1) mol m−2 s−1 exp[(−24.8±0.4)kJ mol−1/RT] and JH2=(3.7±0.6) mol m−2 s−1 exp[(−21.3±1.0)kJ mol−1/RT], respectively, at 100 kPa H2 pressure difference.  相似文献   

18.
To derive accurately the thermodynamic parameters governing the hydrolysis of the lactone ring at physiological pH, a derivative spectrophotometric technique was used for the simultaneous estimation of lactone and carboxylate forms of the 10-hydroxy-camptothecin (10-HC). Validation of the analytical method was done with respect to reproducibility, percent recovery, and level of detection. Hydrolysis of the lactone ring of 10-HC followed a 1st order decay with a rate constant equal to (0.0281 ± 0.001) min−1 in PBS at pH 7.4 and at a temperature of 310 K. The activation energy for the hydrolysis reaction as calculated from the Arrhenius equation was (79.41 ± 0.92) kJ · mol−1, whereas the enthalpy and entropy of hydrolysis of 10-hydroxy-camptothecin were on average 12.45 kJ · mol−1 and 52.37 J · K−1 · mol−1, respectively. The positive enthalpy and entropy values of the 10-HC-lactone hydrolysis indicate that the reaction is endothermic and entropically driven.  相似文献   

19.
The emission spectra of single crystal Ba[Pt(CN)4]·4H2O were measured from 0 to 23 kbar for the two electronic transitions which are polarized with Ec and E;c. They exhibit a red-shift of −280 cm−1/kbar and −195 cm−1/kbar, respectively. 3he red-shift is explained by a pressure induced reduction of the intermolecular separation R in the direction of the linear chain (c-axis). The emission energies obtained at different pressures are compared with the results under normal conditions for various Me[Pt(CN)4]·xH2O salts (with different R). The close analogy between these two methods of R-reduction supports the importance of one-dimensional interaction for the interpretation of electronic properties of the tetracyano-platinates. Ba[Pt(CN)4]·4H2O shows a structural transition region in the pressure range studied here.  相似文献   

20.
The coordination of nitric oxide (NO) to cobalt(II) phthalocyanine (CoPc) in dimethyl sulphoxide (DMSO) has been studied. CoPc coordinates with NO in a 1:1 ratio, forming a CoPc(NO) species. The IR band observed at 1680 cm−1 is assigned to the coordinated NO. In the presence of excess NO, pseudo first order kinetics were followed. The observed rate constant, kf, was determined to be 15.0±0.3 dm−3 mol−1 s−1 and the equilibrium constant was K=5.4±0.4×104dm3 mol−1. Solution or adsorbed CoPc catalyses the reduction of NO. The products of reduction include NH3 and NH2OH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号