首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extremely sterically hindered borane tris(2,2',2'-perfluorobiphenyl)borane (PBB) has been structurally characterised. In combination with bulky nitrogen bases, it forms the 'frustrated Lewis pairs' (FLPs) PBB/2,2,6,6-tetramethylpiperidine (TMP) (1), PBB/1,4-diazobicyclo[2.2.2]-octane (DABCO) (2) and PBB/2,6-lutidine (lut) (3). These novel, unquenched acid-base pairs have been shown to effect facile room temperature heterolytic cleavage of dihydrogen to form the ammonium borate salts [2,2,6,6-Me(4)C(5)H(6)NH(2)][HB(C(12)F(9))(3)] (4) and [N(C(2)H(4))(3)NH][HB(C(12)F(9))(3)] (5), and lutidinium borate [2,6-Me(2)C(5)H(3)NH][HB(C(12)F(9))(3)] (6). Although these reactions are equilibria, the reverse reaction and release of hydrogen gas was not apparent at temperatures up to 120 °C. The relative Lewis acidity of PBB has been determined using the Gutmann-Beckett method.  相似文献   

2.
The cationic zirconocene-phosphinoaryloxide complexes [Cp(2)ZrOC(6)H(4)P(t-Bu)(2)][B(C(6)F(5))(4)] (3) and [Cp*(2)ZrOC(6)H(4)P(t-Bu)(2)][B(C(6)F(5))(4)] (4) were synthesized by the reaction of Cp(2)ZrMe(2) or Cp*(2)ZrMe(2) with 2-(diphenylphosphino)phenol followed by protonation with [2,6-di-tert-butylpyridinium][B(C(6)F(5))(4)]. Compound 3 exhibits a Zr-P bond, whereas the bulkier Cp* derivative 4 was isolated as a chlorobenzene adduct without this Zr-P interaction. These compounds can be described as transition-metal-containing versions of linked frustrated Lewis pairs (FLPs), and treatment of 4 with H(2) under mild conditions cleaved H(2) in a fashion analogous to that for main-group FLPs. Their reactivity in amine borane dehydrogenation also mimics that of main-group FLPs, and they dehydrogenate a range of amine borane adducts. However, in contrast to main-group FLPs, 3 and 4 achieve this transformation in a catalytic rather than stoichiometric sense, with rates superior to those for previous high-valent catalysts.  相似文献   

3.
Reactions of sterically demanding phosphinimines R3PNH [R=i-Pr (1), t-Bu (2)] were examined. Reactions with B(C6F5)3 formed the adducts (R3PNH)B(C6F5)3 [R=i-Pr (3), t-Bu (4)] in high yield. On the other hand, 2 reacts with HB(OBu)2, evolving H2 to give t-Bu3PNB(OBu)2 (5). The reaction of 2 equiv of 2 with BH3.SMe2 affords the species (t-Bu3PN)2BH (6). In contrast, the reaction of n-Bu(t-Bu)2PNH with BH3.SMe2 results in the formation of the robust adduct n-Bu(t-Bu)2PNH.BH3 (8). An alternative route to borane-phosphinimide complexes involves Me3SiCl elimination, as exemplified by the reaction of BCl2Ph with n-Bu3PNSiMe3, which gives the product n-Bu3PNBCl(Ph) (9). The corresponding reactions of the parent phosphinimines 1 and 2 with AlH3.NMe2Et give the dimers [(mu-i-Pr3PN)AlH2]2 (10) and [(mu-t-Bu3PN)AlH2]2 (11). Species 11 reacts further with Me3SiO3SCF3 to provide [(mu-t-Bu3PN)AlH(OSO2CF3)]2 (12). The reaction of the lithium salt [t-Bu3PNLi]4 (13) with BCl3 proceeds smoothly to give t-Bu3PNBCl2 (14), which is readily alkylated to give t-Bu3PNBMe2 (15). Subsequent reaction of 15 with B(C6F5)3 results in methyl abstraction and the formation of [(mu-t-Bu3PN)BMe]2[MeB(C6F5)3]2 (16). The reaction of 13 in a 2:1 ratio with BCl3 gives the salt [(t-Bu3PN)2B]Cl (17). This species can be methylated to give (t-Bu3PN)2BMe (18), which undergoes subsequent reaction with [Ph3C][X] (X=[B(C6F5)4], [PF6]) to form the related salts [(t-Bu3PN)2B][B(C6F5)4] (19) and [(t-Bu3PN)2B][PF6] (20), respectively. Analogous reactions with [Ph3C][BF4] afforded [t-Bu3PNBF2]2 (21). Compounds 3, 4, 6, 8, 11, 12, 17, 19, and 21 were characterized by X-ray crystallography.  相似文献   

4.
Deprotonation of the phosphine complexes Au(PHR(2))Cl with aqueous ammonia gave the gold(I) phosphido complexes [Au(PR(2))](n)() (PR(2) = PMes(2) (1), PCy(2) (2), P(t-Bu)(2) (3), PIs(2) (4), PPhMes (5), PHMes (6); Mes = 2,4,6-Me(3)C(6)H(2), Is = 2,4,6-(i-Pr)(3)C(6)H(2), Mes = 2,4,6-(t-Bu)(3)C(6)H(2), Cy = cyclo-C(6)H(11)). (31)P NMR spectroscopy showed that these complexes exist in solution as mixtures, presumably oligomeric rings of different sizes. X-ray crystallographic structure determinations on single oligomers of 1-4 revealed rings of varying size (n = 4, 6, 6, and 3, respectively) and conformation. Reactions of 1-3 and 5 with PPN[AuCl(2)] gave PPN[(AuCl)(2)(micro-PR(2))] (9-12, PPN = (PPh(3))(2)N(+)). Treatment of 3 with the reagents HI, I(2), ArSH, LiP(t-Bu)(2), and [PH(2)(t-Bu)(2)]BF(4) gave respectively Au(PH(t-Bu)(2))(I) (14), Au(PI(t-Bu)(2))(I) (15), Au(PH(t-Bu)(2))(SAr) (16, Ar = p-t-BuC(6)H(4)), Li[Au(P(t-Bu)(2))(2)] (17), and [Au(PH(t-Bu)(2))(2)]BF(4) (19).  相似文献   

5.
Titanium-phosphorus frustrated Lewis pairs (FLPs) based on titanocene-phosphinoaryloxide complexes have been synthesised. The cationic titanium(IV) complex [Cp(2)TiOC(6)H(4)P((t)Bu)(2)][B(C(6)F(5))(4)] 2 reacts with hydrogen to yield the reduced titanium(III) complex [Cp(2)TiOC(6)H(4)PH((t)Bu)(2)][B(C(6)F(5))(4)] 5. The titanium(III)-phosphorus FLP [Cp(2)TiOC(6)H(4)P((t)Bu)(2)] 6 has been synthesised either by chemical reduction of [Cp(2)Ti(Cl)OC(6)H(4)P((t)Bu)(2)] 1 with [CoCp*(2)] or by reaction of [Cp(2)Ti{N(SiMe(3))(2)}] with 2-C(6)H(4)(OH){P((t)Bu)(2)}. Both 2 and 6 catalyse the dehydrogenation of Me(2)HN·BH(3).  相似文献   

6.
The species Cy(2)PHC(6)F(4)BF(C(6)F(5))(2) reacts with Pt(PPh(3))(4) to yield the new product cis-(PPh(3))(2)PtH(Cy(2)PC(6)F(4)BF(C(6)F(5))(2)) 1 via oxidative addition of the P-H bond of the phosphonium borate to Pt(0). The corresponding reaction with Pd(PPh(3))(4) affords the Pd analogue of 1, namely, cis-(PPh(3))(2)PdH(Cy(2)PC(6)F(4)BF(C(6)F(5))(2)) 3; while modification of the phosphonium borate gave the salt [(PPh(3))(3)PtH][(tBu(2)PC(6)F(4)BF(C(6)F(5))(2))] 2. Alternatively initial deprotonation of the phosphonium borate gave [tBu(3)PH][Cy(2)PC(6)F(4)BF(C(6)F(5))(2)] 4, [SIMesH][Cy(2)PC(6)F(4)BF(C(6)F(5))(2)] 5 which reacted with NiCl(2)(DME) yielding [BaseH](2)[trans-Cl(2)Ni(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))(2)] (Base = tBu(3)P 6, SIMes 7) or with PdCl(2)(PhCN)(2) to give [BaseH](2)[trans-Cl(2)Pd(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))(2)] (Base = tBu(3)P 8, SIMes 9). While [C(10)H(6)N(2)(Me)(4)H][tBu(2)PC(6)F(4)BF(C(6)F(5))(2)] 10 was also prepared. A third strategy for formation of a metal complex of anionic phosphine-borate derivatives was demonstrated in the reaction of (COD)PtMe(2) with the neutral phosphine-borane Mes(2)PC(6)F(4)B(C(6)F(5))(2) affording (COD)PtMe(Mes(2)PC(6)F(4)BMe(C(6)F(5))(2)) 11. Extension of this reactivity to tBu(2)PH(CH(2))(4)OB(C(6)F(5))(3)) was demonstrated in the reaction with Pt(PPh(3))(4) which yielded cis-(PPh(3))(2)PtH(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3)) 12, while the reaction of [SIMesH][tBu(2)P(CH(2))(4)OB(C(6)F(5))(3)] 13 with NiCl(2)(DME) and PdCl(2)(PhCN)(2) afforded the complexes [SIMesH](2)[trans-Cl(2)Ni(tBu(2)PC(4)H(8)OB(C(6)F(5))(3))(2)] 14 and [SIMesH](2)[trans-PdCl(2)(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3))(2)] 15, respectively, analogous to those prepared with 4 and 5. Finally, the reaction of 7 and 13with [(p-cymene)RuCl(2)](2) proceeds to give the new orange products [SIMesH][(p-cymene)RuCl(2)(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))] 16 and [SIMesH][(p-cymene)RuCl(2)(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3))] 17, respectively. Crystal structures of 1, 6, 10, 11, 12, and 16 are reported.  相似文献   

7.
Sterically demanding secondary phosphines and phosphides react with (THF)B(C(6)F(5))(3) (THF = tetrahydrofuran) to give the THF ring-opened compounds [R(2)PHC(4)H(8)OB(C(6)F(5))(3)] and [Mes(2)PC(4)H(8)OB(C(6)F(5))(3)Li(THF)(2)] (Mes = C(6)H(2)Me-2,4,6). These reactions also occur consecutively to give the double THF ring-opened compounds [Mes(2)P(C(4)H(8)OB(C(6)F(5))(3))(2)][Li(THF)(4)] and [t-Bu(2)P(C(4)H(8)OB(C(6)F(5))(3))(2)Li].  相似文献   

8.
The abstraction of the Lewis acid from [W(CO)(5)(PH(2)BH(2)NMe(3))] (1) by an excess of P(OMe(3))(3) leads to the quantitative formation of the first Lewis base stabilized monomeric parent compound of phosphanylborane [H(2)PBH(2)NMe(3)] 2. Density functional theory (DFT) calculations have shown a low energetic difference between the crystallographically determined antiperiplanar arrangement of the lone pair and the trimethylamine group relative to the P-B core and the synperiplanar conformation. Subsequent reactions with the main-group Lewis acid BH(3) as well as with an [Fe(CO)(4)] unit as a transition-metal Lewis acid led to the formation of [(BH(3))PH(2)BH(2)NMe(3)] (3), containing a central H(3)B-PH(2)-BH(2) unit, and [Fe(CO)(4)(PH(2)BH(2)NMe(3))] (4), respectively. In oxidation processes with O(2), Me(3)NO, elemental sulfur, and selenium, the boranylphosphine chalcogenides [H(2)P(Q)BH(2)NMe(3)] (Q = S 5 b; Se 5 c) as well as the novel boranyl phosphonic acid [(HO)(2)P(O)BH(2)NMe(3)] (6 a) are formed. All products have been characterized by spectroscopic as well as by single-crystal X-ray structure analysis.  相似文献   

9.
Halide exchange from the species tBu(3)P(CO(2))B(C(6)F(5))(2)Cl 1 with Me(3)SiOSO(2)CF(3) gave tBu(3)P(CO(2))B(C(6)F(5))(2)(OSO(2)CF(3)) 2. Similarly, Lewis acid exchange occurs in reactions of 1 with Al(C(6)F(5))(3) and [Cp(2)TiMe][B(C(6)F(5))(4)] affording the products, tBu(3)P(CO(2))Al(C(6)F(5))(3)3 and [tBu(3)P(CO(2))TiCp(2)Cl][B(C(6)F(5))(4)] 4.  相似文献   

10.
The ZnMe complexes of bis-ferrocenyl-β-diketiminate ligands are prepared and the reactions with [Ph(3)C][B(C(6)F(5))(4)] are found to yield the salts [H(Ph(3)C)C(MeC(N(C(5)H(4))FeCp)(2)ZnMe] [B(C(6)F(5))(4)] and [CH(2)=C(MeC(N(C(5)H(4))FeCp)(2)ZnMe][B(C(6)F(5))(4)], derived from electrophilic substitution and hydride abstraction.  相似文献   

11.
The concept of "frustrated Lewis pairs" involves donor and acceptor sites in which steric congestion precludes Lewis acid-base adduct formation. In the case of sterically demanding phosphines and boranes, this lack of self-quenching prompts nucleophilic attack at a carbon para to B followed by fluoride transfer affording zwitterionic phosphonium borates [R(3)P(C(6)F(4))BF(C(6)F(5))(2)] and [R(2)PH(C(6)F(4))BF(C(6)F(5))(2)]. These can be easily transformed into the cationic phosphonium-boranes [R(3)P(C(6)F(4))B(C(6)F(5))(2)](+) and [R(2)PH(C(6)F(4))B(C(6)F(5))(2)](+) or into the neutral phosphino-boranes R(2)P(C(6)F(4))B(C(6)F(5))(2). This new reactivity provides a modular route to a family of boranes in which the steric features about the Lewis acidic center remains constant and yet the variation in substitution provides a facile avenue for the tuning of the Lewis acidity. Employing the Gutmann-Beckett and Childs methods for determining Lewis acid strength, it is demonstrated that the cationic boranes are much more Lewis acidic than B(C(6)F(5))(3), while the acidity of the phosphine-boranes is diminished.  相似文献   

12.
The solvent-coordinated [Me(3)Si·arene][B(C(6)F(5))(4)] salts (arene = benzene, toluene, ethylbenzene, n-propylbenzene, isopropylbenzene, o-xylene, m-xylene, p-xylene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene) are prepared and fully characterized. As an interesting decomposition product the formation of bissilylated fluoronium ion [Me(3)Si-F-SiMe(3)](+) was observed and even cocrystallized with [Me(3)Si·arene][B(C(6)F(5))(4)] (arene = benzene and toluene). Investigation of the degradation of [Me(3)Si·arene][B(C(6)F(5))(4)] reveals the formation of fluoronium salt [Me(3)Si-F-SiMe(3)][B(C(6)F(5))(4)], B(C(6)F(5))(3), and a reactive "C(6)F(4)" species which could be trapped with CS(2). Upon addition of CS(2), the formation of a formal S-heterocyclic carbene adduct, C(6)F(4)CS(2)-B(C(6)F(5))(3), was observed. The structure and bonding of substituted [Me(3)Si·arene][B(C(6)F(5))(4)] with arene = R(n)C(6)H(6-n) (R = H, Me, Et, Pr, and Bu; n = 0-6) is discussed on the basis of experimental and theoretical data. X-ray data of [Me(3)Si·arene][B(C(6)F(5))(4)] salts reveal nonplanar arene species with significant cation···anion interactions. As shown by different theoretical approaches (charge transfer, partial charges, trimethylsilyl affinity values) stabilizing inductive effects occur; however, the magnitude of such effects differs depending on the degree of substitution and the substitution pattern.  相似文献   

13.
While B(C(6)F(5))(3) forms the adducts (CH(2))(4)CO(2)B(C(6)F(5))(3)1 and (CHMeCO(2))(2)B(C(6)F(5))(3)7 with δ-valerolactone and lactide, the frustrated Lewis pairs derived from B(C(6)F(5))(3) and phosphine or N-bases react with lactone to effect ring opening affording zwitterionic species of the form L(CH(2))(4)CO(2)B(C(6)F(5))(3) (L = tBu(3)P 2, Cy(3)P 3, C(5)H(3)Me(3)N 4, PhNMe(2) 5, C(5)H(6)Me(4)NH 6) while reaction with rac-lactide results in ring contraction to give salts [LH][OCCHMeCO(2)(CMe)OB(C(6)F(5))(3)] (L = tBu(3)P 8, Cy(3)P 9, C(5)H(3)Me(2)N 10, C(5)H(6)Me(4)NH 11). The mechanistic implications of these reactions are discussed.  相似文献   

14.
Perfluoroalkynylxenonium salts, [RXe][BF(4)] (R = CF(3)C≡C, (CF(3))(2)CFC≡C), reacted with organyl iodides, R'I (R' = 3-FC(6)H(4), C(6)F(5), CF(2)═CF, CF(3)CH(2); no reaction with R' = CF(3)CF(2)CF(2)) in anhydrous HF to yield the corresponding asymmetric polyfluorinated iodonium salts, [RR'I][Y]. The action of the arylxenonium salt, [C(6)F(5)Xe][BF(4)], and the cycloalkenylxenonium salt, [cyclo-1,4-C(6)F(7)Xe][AsF(6)], on 4-FC(6)H(4)I gave [C(6)F(5)(4-FC(6)H(4))I][BF(4)] and [cyclo-1,4-C(6)F(7)(4-FC(6)H(4))I][AsF(6)], respectively, besides the symmetric iodonium salt, [(4-FC(6)H(4))(2)I][Y]. But the aryl-, as well as the cycloalkenylxenonium salt, did not react with C(6)F(5)I, CF(2)═CFI, and CF(3)CH(2)I.  相似文献   

15.
The synthesis, structures, and reactivity of cationic aluminum complexes containing the N,N'-diisopropylaminotroponiminate ligand ((i)Pr(2)-ATI(-)) are described. The reaction of ((i)Pr(2)-ATI)AlR(2) (1a-e,g,h; R = H (a), Me (b), Et (c), Pr (d), (i)Bu (e), Cy (g), CH(2)Ph (h)) with [Ph(3)C][B(C(6)F(5))(4)] yields ((i)()Pr(2)-ATI)AlR(+) species whose fate depends on the properties of the R ligand. 1a and 1b react with 0.5 equiv of [Ph(3)C][B(C(6)F(5))(4)] to produce dinuclear monocationic complexes [([(i)Pr(2)-ATI] AlR)(2)(mu-R)][(C(6)F(5))(4)] (2a,b). The cation of 2b contains two ((i)()Pr(2)-ATI)AlMe(+) units linked by an almost linear Al-Me-Al bridge; 2a is presumed to have an analogous structure. 2b does not react further with [Ph(3)C][B(C(6)F(5))(4)]. However, 1a reacts with 1 equiv of [Ph(3)C][B(C(6)F(5))(4)] to afford ((i Pr(2)-ATI)Al(C(6)F(5))(mu-H)(2)B(C(6)F(5))(2) (3) and other products, presumably via C(6)F(5)(-) transfer and ligand redistribution of a [((i)()Pr(2)-ATI)AlH][(C(6)F(5))(4)] intermediate. 1c-e react with 1 equiv of [Ph(3)C][B(C(6)F(5))(4)] to yield stable base-free [((i)Pr(2)-ATI)AlR][B(C(6)F(5))(4)] complexes (4c-e). 4c crystallizes from chlorobenzene as 4c(ClPh).0.5PhCl, which has been characterized by X-ray crystallography. In the solid state the PhCl ligand of 4c(ClPh) is coordinated by a dative PhCl-Al bond and an ATI/Ph pi-stacking interaction. 1g,h react with [Ph(3)C][B(C(6)F(5))(4)] to yield ((i)Pr(2)-ATI)Al(R)(C(6)F(5)) (5g,h) via C(6)F(5)(-) transfer of [((i)Pr(2)-ATI)AlR][(BC(6)F(5))(4)] intermediates. 1c,h react with B(C(6)F(5))(3) to yield ((i)Pr(2)-ATI)Al(R)(C(6)F(5)) (5c,h) via C(6)F(5)(-) transfer of [((i)Pr(2)-ATI)AlR][RB(C(6)F(5))(3)] intermediates. The reaction of 4c-e with MeCN or acetone yields [((i)Pr(2)-ATI)Al(R)(L)][B(C(6)F(5))(4)] adducts (L = MeCN (8c-e), acetone (9c-e)), which undergo associative intermolecular L exchange. 9c-e undergo slow beta-H transfer to afford the dinuclear dicationic alkoxide complex [(((i)Pr(2)-ATI)Al(mu-O(i)()Pr))(2)][B(C(6)F(5))(4)](2) (10) and the corresponding olefin. 4c-e catalyze the head-to-tail dimerization of tert-butyl acetylene by an insertion/sigma-bond metathesis mechanism involving [((i)Pr(2)-ATI)Al(C=C(t)Bu)][B(C(6)F(5))(4)] (13) and [((i)Pr(2)-ATI)Al(CH=C((t)()Bu)C=C(t)Bu)][B(C(6)F(5))(4)] (14) intermediates. 13 crystallizes as the dinuclear dicationic complex [([(i Pr(2)-ATI]Al(mu-C=C(t)Bu))(2)][B(C(6)F(5))(4)](2).5PhCl from chlorobenzene. 4e catalyzes the polymerization of propylene oxide and 2a catalyzes the polymerization of methyl methacrylate. 4c,e react with ethylene-d(4) by beta-H transfer to yield [((i)Pr(2)-ATI)AlCD(2)CD(2)H][B(C(6)F(5))(4)] initially. Polyethylene is also produced in these reactions by an unidentified active species.  相似文献   

16.
Treatment of the secondary phosphine {(Me(3)Si)(2)CH}PH(C(6)H(4)-2-SMe) with BH(3)·SMe(2) gives the corresponding phosphine-borane {(Me(3)Si)(2)CH}PH(BH(3))(C(6)H(4)-2-SMe) (9) as a colourless solid. Deprotonation of 9 with n-BuLi, PhCH(2)Na or PhCH(2)K proceeds cleanly to give the corresponding alkali metal complexes [[{(Me(3)Si)(2)CH}P(BH(3))(C(6)H(4)-2-SMe)]ML](n) [ML = Li(THF), n = 2 (10); ML = Na(tmeda), n = ∞ (11); ML = K(pmdeta), n = 2 (12)] as yellow/orange crystalline solids. X-ray crystallography reveals that the phosphido-borane ligands bind the metal centres through their sulfur and phosphorus atoms and through the hydrogen atoms of the BH(3) group in each case, leading to dimeric or polymeric structures. Compounds 10-12 are stable towards both heat and ambient light; however, on heating in toluene solution in the presence of 10, traces of free phosphine-borane 9 are slowly converted to the free phosphine {(Me(3)Si)(2)CH}PH(C(6)H(4)-2-SMe) (5) with concomitant formation of the corresponding phosphido-bis(borane) complex [{(Me(3)Si)(2)CH}P(BH(3))(2)(C(6)H(4)-2-SMe)]Li (14).  相似文献   

17.
Salen complexes of the heavy alkaline-earth metals, calcium and strontium, were prepared by the reaction of various salen(t-Bu)H(2) ligands with the metals in ethanol. Six new calcium and strontium compounds, [Ca(salen(t-Bu))(HOEt)(2)(thf)] (1), [Ca(salen(t-Bu))(HOEt)(2)] (2), [Ca(salpen(t-Bu))(HOEt)(3)] (3), [Ca(salophen(t-Bu))(HOEt)(thf)] (4), [Sr(salen(t-Bu))(HOEt)(3)] (5), and [Sr(salophen(t-Bu))(HOEt)(thf)(2)] (6), were formed in this way with the quatridentate Schiff-base ligands N,N'-bis(3,5-di-tert-butylsalicylidene)ethylenediamine (salen(t-Bu)H(2)), N,N'-bis(3,5-di-tert-butylsalicylidene)-1,3-propanediamine (salpen(t-Bu)H(2)), and N,N'-o-phenylenebis(3,5-di-tert-butylsalicylideneimine (salophen(t-Bu)H(2)). Initially, ammonia solutions of the metals were combined with the salen(t-Bu)H(2) ligands, and in the reaction of strontium with salen(t-Bu)H(2), the unusual tetrametallic cluster [(OC(6)H(2)(t-Bu)(2)CHN(CH(2))(2)NH(2))Sr(mu(3)-salean(t-Bu)H(2))Sr(mu(3)-OH)](2) (7) was produced (salean(t-Bu)H(4) = N,N'-bis(3,5-di-tert-butyl-2-hydroxybenzyl)ethylenediamine). In this compound, the imine bonds of the salen(t-Bu)H(2) ligand were reduced to form the known ligands salean(t-Bu)H(4) and (HO)C(6)H(2)(t-Bu)(2)CHN(CH(2))(2)NH(2). Compounds 1, 5, 6, and 7 were structurally characterized by single-crystal X-ray diffraction. Crystal data for 1 (C(44)H(74)CaN(2)O(6)): triclinic space group P(-)1, a = 8.3730(10) A, b = 14.8010(10) A, c = 18.756(2) A, alpha = 72.551(10) degrees, beta = 81.795(10) degrees, gamma = 78.031(10) degrees, Z = 2. Crystal data for 5 (C(38)H(64)SrN(2)O(5)): monoclinic space group P2(1)/c, a = 23.634(3) A, b = 8.4660(10) A, c = 24.451(3) A, beta = 101.138(10) degrees, Z = 4. Crystal data for 6 (C(46)H(67)N(2)O(5)Sr): orthorhombic space group P2(1)2(1)2(1), a = 10.5590(2) A, b = 16.2070(3) A, c = 26.7620(6) A, Z = 4. Crystal data for 7 (C(98)H(156)N(8)O(8)Sr(4)): triclinic space group P(-)1, a = 14.667(1) A, b = 15.670(1) A, c = 18.594(2) A, alpha = 92.26(1) degrees, beta = 111.84(1) degrees, gamma = 117.12(1) degrees, Z = 4.  相似文献   

18.
The protonolysis reaction of [Ln(AlMe(4))(3)] with various substituted cyclopentadienyl derivatives HCp(R) gives access to a series of half-sandwich complexes [Ln(AlMe(4))(2)(Cp(R))]. Whereas bis(tetramethylaluminate) complexes with [1,3-(Me(3)Si)(2)C(5)H(3)] and [C(5)Me(4)SiMe(3)] ancillary ligands form easily at ambient temperature for the entire Ln(III) cation size range (Ln=Lu, Y, Sm, Nd, La), exchange with the less reactive [1,2,4-(Me(3)C)(3)C(5)H(3)] was only obtained at elevated temperatures and for the larger metal centers Sm, Nd, and La. X-ray structure analyses of seven representative complexes of the type [Ln(AlMe(4))(2)(Cp(R))] reveal a similar distinct [AlMe(4)] coordination (one eta(2), one bent eta(2)). Treatment with Me(2)AlCl leads to [AlMe(4)] --> [Cl] exchange and, depending on the Al/Ln ratio and the Cp(R) ligand, varying amounts of partially and fully exchanged products [{Ln(AlMe(4))(mu-Cl)(Cp(R))}(2)] and [{Ln(mu-Cl)(2)(Cp(R))}(n)], respectively, have been identified. Complexes [{Y(AlMe(4))(mu-Cl)(C(5)Me(4)SiMe(3))}(2)] and [{Nd(AlMe(4))(mu-Cl){1,2,4-(Me(3)C)(3)C(5)H(2)}}(2)] have been characterized by X-ray structure analysis. All of the chlorinated half-sandwich complexes are inactive in isoprene polymerization. However, activation of the complexes [Ln(AlMe(4))(2)(Cp(R))] with boron-containing cocatalysts, such as [Ph(3)C][B(C(6)F(5))(4)], [PhNMe(2)H][B(C(6)F(5))(4)], or B(C(6)F(5))(3), produces initiators for the fabrication of trans-1,4-polyisoprene. The choice of rare-earth metal cation size, Cp(R) ancillary ligand, and type of boron cocatalyst crucially affects the polymerization performance, including activity, catalyst efficiency, living character, and polymer stereoregularity. The highest stereoselectivities were observed for the precatalyst/cocatalyst systems [La(AlMe(4))(2)(C(5)Me(4)SiMe(3))]/B(C(6)F(5))(3) (trans-1,4 content: 95.6 %, M(w)/M(n)=1.26) and [La(AlMe(4))(2)(C(5)Me(5))]/B(C(6)F(5))(3) (trans-1,4 content: 99.5 %, M(w)/M(n)=1.18).  相似文献   

19.
Treatment of the titanium(IV) alkoxide complex [Ti(Oi Pr)(OC6Me2H(2)CH2)3N] (2) with BH3.THF, as part of a study into the utility and reactivity of (2) in the metal mediated borane reduction of acetophenone, results in alkoxide-hydride exchange and formation of the structurally characterised titanium(iv) tetrahydroborate complex [Ti{BH4}(OC6Me2H2CH2)3N] (3). Complex (3) readily undergoes reduction to form the isolable titanium(III) species [Ti(OC6Me2H2CH2)3N]2 (4). Reaction of (2) with B(C6F5)3 results in formation of the Lewis acid adduct [Ti(OC6Me2H2CH2)3N][HO.B(C6F5)3] (5). In comparison, treatment of the less sterically encumbered alkoxide Ti(Oi Pr)4 with B(C6F5)3 results in alkoxide-aryl exchange and formation of the organometallic titanium complex [Ti(Oi Pr)3(C6F5)]2 (6). The molecular structures of 3, 4, 5 and 6 have been determined by X-ray diffraction.  相似文献   

20.
A series of rare-earth-metal-hydrocarbyl complexes bearing N-type functionalized cyclopentadienyl (Cp) and fluorenyl (Flu) ligands were facilely synthesized. Treatment of [Y(CH(2)SiMe(3))(3)(thf)(2)] with equimolar amount of the electron-donating aminophenyl-Cp ligand C(5)Me(4)H-C(6)H(4)-o-NMe(2) afforded the corresponding binuclear monoalkyl complex [({C(5)Me(4)-C(6)H(4)-o-NMe(μ-CH(2))}Y{CH(2)SiMe(3)})(2)] (1a) via alkyl abstraction and C-H activation of the NMe(2) group. The lutetium bis(allyl) complex [(C(5)Me(4)-C(6)H(4)-o-NMe(2))Lu(η(3)-C(3)H(5))(2)] (2b), which contained an electron-donating aminophenyl-Cp ligand, was isolated from the sequential metathesis reactions of LuCl(3) with (C(5)Me(4)-C(6)H(4)-o-NMe(2))Li (1 equiv) and C(3)H(5)MgCl (2 equiv). Following a similar procedure, the yttrium- and scandium-bis(allyl) complexes, [(C(5)Me(4)-C(5)H(4)N)Ln(η(3)-C(3)H(5))(2)] (Ln=Y (3a), Sc (3b)), which also contained electron-withdrawing pyridyl-Cp ligands, were also obtained selectively. Deprotonation of the bulky pyridyl-Flu ligand (C(13)H(9)-C(5)H(4)N) by [Ln(CH(2)SiMe(3))(3)(thf)(2)] generated the rare-earth-metal-dialkyl complexes, [(η(3)-C(13)H(8)-C(5)H(4)N)Ln(CH(2)SiMe(3))(2)(thf)] (Ln=Y (4a), Sc (4b), Lu (4c)), in which an unusual asymmetric η(3)-allyl bonding mode of Flu moiety was observed. Switching to the bidentate yttrium-trisalkyl complex [Y(CH(2)C(6)H(4)-o-NMe(2))(3)], the same reaction conditions afforded the corresponding yttrium bis(aminobenzyl) complex [(η(3)-C(13)H(8)-C(5)H(4)N)Y(CH(2)C(6)H(4)-o-NMe(2))(2)] (5). Complexes 1-5 were fully characterized by (1)H and (13)C NMR and X-ray spectroscopy, and by elemental analysis. In the presence of both [Ph(3)C][B(C(6)F(5))(4)] and AliBu(3), the electron-donating aminophenyl-Cp-based complexes 1 and 2 did not show any activity towards styrene polymerization. In striking contrast, upon activation with [Ph(3)C][B(C(6)F(5))(4)] only, the electron-withdrawing pyridyl-Cp-based complexes 3, in particular scandium complex 3b, exhibited outstanding activitiy to give perfectly syndiotactic (rrrr >99%) polystyrene, whereas their bulky pyridyl-Flu analogues (4 and 5) in combination with [Ph(3)C][B(C(6)F(5))(4)] and AliBu(3) displayed much-lower activity to afford syndiotactic-enriched polystyrene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号